Assessment of a Low-Cost Mosquito-Borne Disease Early Warning System Integrating Molecular Mosquito and Arbovirus Surveillance.

Saved in:
Bibliographic Details
Title: Assessment of a Low-Cost Mosquito-Borne Disease Early Warning System Integrating Molecular Mosquito and Arbovirus Surveillance.
Authors: Jurado-Sánchez N; Viral & Human Genomics BSL-3 Laboratory, Faculty of Medicine, UASLP, San Luis Potosí, Mexico., Espinosa-Reyes G; Coordination for the Innovation and Application of Science and Technology (CIACYT), WHO Collaborating Centre on Health Risk Assessment and Children's Environmental Health, Faculty of Medicine, UASLP, San Luis Potosí, Mexico., Comas-García A; Department of Microbiology, Faculty of Medicine, UASLP, San Luis Potosí, Mexico.; Faculty of Medicine, Universidad Cuauhtémoc, San Luis Potosí, San Luis Potosí, Mexico., Barriga-Martínez FD; Coordination for the Innovation and Application of Science and Technology (CIACYT), WHO Collaborating Centre on Health Risk Assessment and Children's Environmental Health, Faculty of Medicine, UASLP, San Luis Potosí, Mexico., Comas-García M; Health and Biomedical Sciences Research Centre (CICSaB), UASLP, San Luis Potosí, Mexico.; Faculty of Sciences, UASLP, San Luis Potosí, Mexico., Guerra-Palomares SE; Viral & Human Genomics BSL-3 Laboratory, Faculty of Medicine, UASLP, San Luis Potosí, Mexico., García-Sepúlveda CA; Viral & Human Genomics BSL-3 Laboratory, Faculty of Medicine, UASLP, San Luis Potosí, Mexico.
Source: Zoonoses and public health [Zoonoses Public Health] 2025 Nov; Vol. 72 (7), pp. 669-682. Date of Electronic Publication: 2025 Aug 04.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Blackwell Verlag Country of Publication: Germany NLM ID: 101300786 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1863-2378 (Electronic) Linking ISSN: 18631959 NLM ISO Abbreviation: Zoonoses Public Health Subsets: MEDLINE
Imprint Name(s): Original Publication: Berlin, Germany : Blackwell Verlag
MeSH Terms: Arboviruses*/isolation & purification , Mosquito Vectors*/virology , Culicidae*/virology , Arbovirus Infections*/epidemiology , Arbovirus Infections*/virology, Animals ; Mexico/epidemiology ; Humans ; Mosquito-Borne Diseases
Abstract: Introduction: Arboviruses can be transmitted by Anophelinae (Anopheles genus) or Culicinae (Aedes and Culex genera) mosquitoes. Ecological and sociodemographic factors such as urbanisation, poverty, access to health systems and social inequality determine vector density and risk of disease transmission. Effective surveillance of vectors and arboviruses is crucial for guiding public health strategies.
Methods: We developed a low-cost molecular approach integrating mosquito and arbovirus surveillance and assessed its performance during 2021 in San Luis Potosí, Mexico. Our approach incorporates an innovative mosquito trap (Yoy trap), an ITS2-based mosquito molecular taxonomy assay and the use of FTA card preservation of arboviral RNA.
Results: A total of 16,319 mosquitoes were collected, Culex spp. genus being the most abundant (63.3%) followed by Aedes spp. (26.6%) and Anopheles spp. (4.7%). Our approach allowed us to characterise mosquito population dynamics including the centripetal expansion of mosquito range from city outskirts to urban areas. Viral RNA screening of 124 FTA cards identified the presence of four arboviruses in mosquitoes of the city of San Luis Potosi: DENV (6.5%), ZIKV (5.6%), CHIKV (1.6%) and WNV (3.2%).
Conclusions: This surveillance system detected DENV in mosquitoes 7 weeks prior to the first reported human case, further supporting the public health benefits deriving from the adoption of similar innovative, low-cost and robust surveillance systems.
(© 2025 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Achee, N. L., J. P. Grieco, H. Vatandoost, et al. 2019. “Alternative Strategies for Mosquito‐Borne Arbovirus Control.” PLoS Neglected Tropical Diseases 13, no. 1: e0006822.
Baak‐Baak, C. M., N. Cigarroa‐Toledo, A. Pech‐May, et al. 2019. “Entomological and Virological Surveillance for Dengue Virus in Churches in Merida, Mexico.” Revista do Instituto de Medicina Tropical de São Paulo 61: e9. https://pubmed.ncbi.nlm.nih.gov/30785563/.
Barbachano‐Guerrero, A., A. A. Vásquez‐Aguilar, A. Alonso Aguirre, et al. 2019. “West Nile Virus Prevalence in Wild Birds From Mexico.” Journal of Wildlife Diseases 55, no. 2: 425–431. https://pubmed.ncbi.nlm.nih.gov/30339087/.
Ceballos‐Licdeaga, S. E., G. Carbajal‐Sandoval, and L. Mayo‐Guerra. 2021. “Panorama Epidemiológico de Dengue, Semana Epidemiológica 52 de 2021.” https://www.gob.mx/cms/uploads/attachment/file/690879/Pano_dengue_52_2021.pdf.
Chan, J. F. W., C. C. Y. Yip, K. M. Tee, et al. 2017. “Improved Detection of Zika Virus RNA in Human and Animal Specimens by a Novel, Highly Sensitive and Specific Real‐Time RT‐PCR Assay Targeting the 5′‐Untranslated Region of Zika Virus.” Tropical Medicine & International Health 22, no. 5: 594–603. https://onlinelibrary.wiley.com/doi/full/10.1111/tmi.12857.
Chilakam, N., V. Lakshminarayanan, S. Keremutt, et al. 2023. “Economic Burden of Mosquito‐Borne Diseases in Low‐ and Middle‐Income Countries: Protocol for a Systematic Review.” JMIR Research Protocols 12: e50985.
Correa‐Morales, F., C. González‐Acosta, D. Ibarra‐Ojeda, and M. Moreno‐García. 2024. “West Nile Virus in Mexico: Why Vectors Matter for Explaining the Current Absence of Epidemics.” Acta Tropica 249: 107065. https://pubmed.ncbi.nlm.nih.gov/37926384/.
Cribellier, A., J. Spitzen, H. Fairbairn, C. Van De Geer, J. L. Van Leeuwen, and F. T. Muijres. 2020. “Lure, Retain, and Catch Malaria Mosquitoes. How Heat and Humidity Improve Odour‐Baited Trap Performance.” Malaria Journal 19, no. 1: 357.
Dahmana, H., and O. Mediannikov. 2020. “Mosquito‐Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically.” Pathogens 9, no. 4: 310.
Davila, E., N. A. Fernández‐Santos, J. G. Estrada‐Franco, et al. 2022. “Domestic Dogs as Sentinels for West Nile Virus but Not Aedes‐Borne Flaviviruses, Mexico.” Emerging Infectious Diseases 28, no. 5: 1071–1074. https://pubmed.ncbi.nlm.nih.gov/35447062/.
Dees, W. H., T. L. Sylvester, B. M. Clark, L. D. Canning, G. W. Schultz, and D. L. Kline. 2012. “An Innovative Mosquito Trap for Testing Attractants.” Journal of the American Mosquito Control Association 28, no. 1: 62–64. http://www.ncbi.nlm.nih.gov/pubmed/22533089.
Diallo, D., A. A. Sall, C. T. Diagne, et al. 2014. “Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011.” PLoS One 9, no. 10: e109442.
Figuerola, J., M. Ángel Jiménez‐Clavero, J. Ruíz‐López, et al. 2022. “A One Health View of the West Nile Virus Outbreak in Andalusia.” Emerging Microbes & Infections 11, no. 1: 2570–2578. https://doi.org/10.1080/22221751.
Giordano, B. V., S. K. Bartlett, D. A. Falcon, R. P. Lucas, M. J. Tressler, and L. P. Campbell. 2020. “Mosquito Community Composition, Seasonal Distributions, and Trap Bias in Northeastern Florida.” Journal of Medical Entomology 57, no. 5: 1501–1509. https://pubmed.ncbi.nlm.nih.gov/32206774/.
Gorris, M. E., A. W. Bartlow, S. D. Temple, et al. 2021. “Updated Distribution Maps of Predominant Culex Mosquitoes Across the Americas.” Parasites & Vectors 14, no. 1: 547–559. https://pubmed.ncbi.nlm.nih.gov/34688314/.
Guthid, S., K. A. Hanley, B. M. Althouse, and M. Boots. 2020. “Ecological Processes Underlying the Emergence of Novel Enzootic Cycles: Arboviruses in the Neotropics as a Case Study.” PLoS Neglected Tropical Diseases 14, no. 8: 1–22. https://pubmed.ncbi.nlm.nih.gov/32790670/.
Haba, Y., and L. McBride. 2022. “Origin and Status of Culex pipiens Mosquito Ecotypes.” Current Biology 32, no. 5: R237–R246.
Han, H. J., H. L. Wen, C. M. Zhou, et al. 2015. “Bats as Reservoirs of Severe Emerging Infectious Diseases.” Virus Research 205: 1–6. https://pmc.ncbi.nlm.nih.gov/articles/PMC7132474/.
Harbach, R. E. 2024. “Mosquito Taxonomic Inventory.” https://mosquito‐taxonomic‐inventory.myspecies.info/.
Hernández‐Aguilar, I., C. Lorenzo, L. R. Ramírez‐Palacios, A. Santos‐Moreno, and E. J. Naranjo. 2023. “Molecular Detection of Dengue Virus, Zika Virus, and Chikungunya Virus Arboviruses in Neotropical Bats.” Vector‐Borne and Zoonotic Diseases 23, no. 8: 428–436. https://pubmed.ncbi.nlm.nih.gov/37389819/.
Instituto de Diagnóstico y Referencia Epidemiológicos ‘Dr. Manuel Martínez Baez’. 2021. “Lineamientos para la Vigilancia por Laboratorio Dengue y otras arbovirosis.” https://www.gob.mx/cms/uploads/attachment/file/629265/Lineamientos_Dengue_Arb_V1‐2021.pdf.
Johnson, B. J., T. Kerlin, S. Hall‐Mendelin, et al. 2015. “Development and Field Evaluation of the Sentinel Mosquito Arbovirus Capture Kit (SMACK).” Parasites & Vectors 8, no. 1: 509.
Jourdain, F., A. M. Samy, A. Hamidi, et al. 2019. “Towards Harmonisation of Entomological Surveillance in the Mediterranean Area.” PLoS Neglected Tropical Diseases 13, no. 6: e0007314. https://pmc.ncbi.nlm.nih.gov/articles/PMC6563966/.
Kjellstrom, T., S. Friel, J. Dixon, et al. 2007. “Urban Environmental Health Hazards and Health Equity.” Journal of Urban Health 84, no. S1: 86–97.
Lega, J., H. E. Brown, and R. Barrera. 2017. “Aedes aegypti (Diptera: Culicidae) Abundance Model Improved With Relative Humidity and Precipitation‐Driven Egg Hatching.” Journal of Medical Entomology 54, no. 5: 1375–1384.
Li, Y., F. Kamara, G. Zhou, et al. 2014. “Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship.” PLoS Neglected Tropical Diseases 8, no. 11: e3301.
Melanson, V. R., R. Jochim, M. Yarnell, K. B. Ferlez, S. Shashikumar, and J. H. Richardson. 2017. “Improving Vector‐Borne Pathogen Surveillance: A Laboratory‐Based Study Exploring the Potential to Detect Dengue Virus and Malaria Parasites in Mosquito Saliva.” Journal of Vector Borne Diseases 54, no. 4: 301–310.
Mewara, A., M. Sharma, T. Kaura, K. Zaman, R. Yadav, and R. Sehgal. 2018. “Rapid Identification of Medically Important Mosquitoes by Matrix‐Assisted Laser Desorption/Ionization Time‐Of‐Flight Mass Spectrometry.” Parasites & Vectors 11, no. 1: 281–289. https://pubmed.ncbi.nlm.nih.gov/29720246/.
Moser, S. K., M. Barnard, R. M. Frantz, et al. 2023. “Scoping Review of Culex Mosquito Life History Trait Heterogeneity in Response to Temperature.” Parasites & Vectors 16, no. 1: 200. https://pubmed.ncbi.nlm.nih.gov/37316915/.
Muñoz, Á. G., and M. C. Thomson. 2016. “The Latin American and Caribbean Climate Landscape for ZIKV Transmission.” Available from: 10.7916/D8X34XHV.
Natarajan, P., T. Trinh, L. Mertz, M. Goldsborough, and D. K. Fox. 2000. “Paper‐Based Archiving of Mammalian and Plant Samples for RNA Analysis.” BioTechniques 29, no. 6: 1328–1333. https://pubmed.ncbi.nlm.nih.gov/11126136/.
Naze, F., K. Le Roux, I. Schuffenecker, et al. 2009. “Simultaneous Detection and Quantitation of Chikungunya, Dengue and West Nile Viruses by Multiplex RT‐PCR Assays and Dengue Virus Typing Using High Resolution Melting.” Journal of Virological Methods 162, no. 1–2: 1–7. https://pubmed.ncbi.nlm.nih.gov/19773088/.
Ortega‐Morales, A. I., T. J. Zavortink, J. A. Garza‐Hernández, Q. K. Siller‐Rodríguez, and I. Fernández‐Salas. 2019. “The Mosquitoes (Diptera: Culicidae) of Nuevo León, Mexico, With Descriptions of Two New Species.” PLoS One 14, no. 6: e0217694. https://doi.org/10.1371/journal.pone.0217694.
Ortega‐Morales, A. I., T. J. Zavortink, H. Huerta‐Jiménez, et al. 2015. “Mosquito Records From Mexico: The Mosquitoes (Diptera: Culicidae) of Tamaulipas State.” Journal of Medical Entomology 52, no. 2: 171–184. https://pubmed.ncbi.nlm.nih.gov/26336302/.
Quirke, P. 1992. “The Molecular Revolution—Coming Your Way Soon.” Gut 33, no. 1: 1–3. https://gut.bmj.com/content/33/1/1.
Ramírez, A. L., A. F. Van Den Hurk, D. B. Meyer, and S. A. Ritchie. 2018. “Searching for the Proverbial Needle in a Haystack: Advances in Mosquito‐Borne Arbovirus Surveillance.” Parasites & Vectors 11, no. 1: 320.
Reineke, A., P. Karlovsky, and C. P. W. Zebitz. 1998. “Preparation and Purification of DNA From Insects for AFLP Analysis.” Insect Molecular Biology 7, no. 1: 95–99.
Reinert, J. F., R. E. Harbach, and I. J. Kitching. 2004. “Phylogeny and Classification of Aedini (Diptera: Culicidae), Based on Morphological Characters of All Life Stages.” Zoological Journal of the Linnean Society 142, no. 3: 289–368. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1096‐3642.2004.00144.x.
Roiz, D., S. Ruiz, R. Soriguer, and J. Figuerola. 2014. “Climatic Effects on Mosquito Abundance in Mediterranean Wetlands.” Parasites & Vectors 7, no. 1: 333–345. https://pubmed.ncbi.nlm.nih.gov/25030527/.
Rossati, A., O. Bargiacchi, V. Kroumova, M. Zaramella, A. Caputo, and P. L. Garavelli. 2016. “Climate, Environment and Transmission of Malaria.” Infezioni in Medicina 24, no. 2: 93–104. https://pubmed.ncbi.nlm.nih.gov/27367318/.
Sakai, T., A. Ishii, T. Segawa, Y. Takagi, Y. Kobayashi, and T. Itou. 2015. “Establishing Conditions for the Storage and Elution of Rabies Virus RNA Using FTA® Cards.” Journal of Veterinary Medical Science 77, no. 4: 461–465. https://pubmed.ncbi.nlm.nih.gov/25648208/.
Soni, S., V. J. Gill, J. Singh, J. Chhabra, G. J. Gill, and R. Bakshi. 2023. “Dengue, Chikungunya, and Zika: The Causes and Threats of Emerging and Re‐Emerging Arboviral Diseases.” Cureus 15, no. 7: 1–7.
Sukhdev, P., T. Elmqvist, M. Fragkias, et al. 2013. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities A Global Assessment. Springer. https://library.oapen.org/handle/20.500.12657/28058.
Tang, Z., H. Yamada, C. Kraupa, et al. 2020. “High Sensitivity of One‐Step Real‐Time Reverse Transcription Quantitative PCR to Detect Low Virus Titers in Large Mosquito Pools.” Parasites & Vectors 13, no. 1: 460–472. https://pubmed.ncbi.nlm.nih.gov/32907625/.
Torres‐Castro, M., H. Noh‐Pech, S. Hernández‐Betancourt, R. Peláez‐Sánchez, C. Lugo‐Caballero, and F. I. Puerto. 2021. “West Nile and Zika Viruses in Bats From a Suburban Area of Merida, Yucatan, Mexico.” Zoonoses and Public Health 68, no. 7: 834–841. https://pubmed.ncbi.nlm.nih.gov/33878223/.
Van Breugel, F., J. Riffell, A. Fairhall, and M. H. Dickinson. 2015. “Mosquitoes Use Vision to Associate Odor Plumes With Thermal Targets.” Current Biology 25, no. 16: 2123–2129. https://pubmed.ncbi.nlm.nih.gov/26190071/.
Wipf, N. C., V. Guidi, M. Tonolla, M. Ruinelli, P. Müller, and O. Engler. 2019. “Evaluation of Honey‐Baited FTA Cards in Combination With Different Mosquito Traps in an Area of Low Arbovirus Prevalence.” Parasites & Vectors 12, no. 1: 554.
World Health Organization. 2024a. “The ‘World Malaria Report 2019’ at a Glance.” https://www.who.int/news‐room/feature‐stories/detail/world‐malaria‐report‐2019.
World Health Organization. 2024b. “Zika Virus Disease.” https://www.who.int/health‐topics/zika‐virus‐disease#tab=tab_1.
World Health Organization. 2024c. “Chikungunya Fact Sheet.” https://www.who.int/news‐room/fact‐sheets/detail/chikungunya.
World Health Organization. 2024d. “West Nile Virus.” https://www.who.int/news‐room/fact‐sheets/detail/west‐nile‐virus.
Young, P. R. 2018. “Arboviruses: A Family on the Move.” In Advances in Experimental Medicine and Biology, vol. 1062, 1–10. Springer.
Zhang, H. D., J. Gao, D. Xing, et al. 2022. “Fine‐Scale Genetic Structure and Wolbachia Infection of Aedes albopictus (Diptera: Culicidae) in Nanjing City, China.” Frontiers in Genetics 13: 1–14. https://pubmed.ncbi.nlm.nih.gov/36110209/.
Grant Information: CBF-2025-I-3953 Secretariat of Science, Humanities, Technology and Innovation (SECIHT):
Contributed Indexing: Keywords: Aedes; Anopheles; Culex; Zika; chikungunya; dengue
Entry Date(s): Date Created: 20250805 Date Completed: 20251009 Latest Revision: 20251009
Update Code: 20251009
DOI: 10.1111/zph.70005
PMID: 40760766
Database: MEDLINE
Description
Abstract:Introduction: Arboviruses can be transmitted by Anophelinae (Anopheles genus) or Culicinae (Aedes and Culex genera) mosquitoes. Ecological and sociodemographic factors such as urbanisation, poverty, access to health systems and social inequality determine vector density and risk of disease transmission. Effective surveillance of vectors and arboviruses is crucial for guiding public health strategies.<br />Methods: We developed a low-cost molecular approach integrating mosquito and arbovirus surveillance and assessed its performance during 2021 in San Luis Potosí, Mexico. Our approach incorporates an innovative mosquito trap (Yoy trap), an ITS2-based mosquito molecular taxonomy assay and the use of FTA card preservation of arboviral RNA.<br />Results: A total of 16,319 mosquitoes were collected, Culex spp. genus being the most abundant (63.3%) followed by Aedes spp. (26.6%) and Anopheles spp. (4.7%). Our approach allowed us to characterise mosquito population dynamics including the centripetal expansion of mosquito range from city outskirts to urban areas. Viral RNA screening of 124 FTA cards identified the presence of four arboviruses in mosquitoes of the city of San Luis Potosi: DENV (6.5%), ZIKV (5.6%), CHIKV (1.6%) and WNV (3.2%).<br />Conclusions: This surveillance system detected DENV in mosquitoes 7 weeks prior to the first reported human case, further supporting the public health benefits deriving from the adoption of similar innovative, low-cost and robust surveillance systems.<br /> (© 2025 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
ISSN:1863-2378
DOI:10.1111/zph.70005