Highly Multiplexed Immunofluorescence Imaging of Mouse Oocytes.
Saved in:
| Title: | Highly Multiplexed Immunofluorescence Imaging of Mouse Oocytes. |
|---|---|
| Authors: | Noble C; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France., Esteves T; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.; Universitat Pompeu Fabra (UPF), Barcelona, Spain., Al Jord A; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. adel.aljord@crg.eu.; Universitat Pompeu Fabra (UPF), Barcelona, Spain. adel.aljord@crg.eu. |
| Source: | Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2946, pp. 163-173. |
| Publication Type: | Journal Article |
| Language: | English |
| Journal Info: | Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE |
| Imprint Name(s): | Publication: Totowa, NJ : Humana Press Original Publication: Clifton, N.J. : Humana Press, |
| MeSH Terms: | Oocytes*/metabolism , Oocytes*/cytology , Fluorescent Antibody Technique*/methods, Animals ; Mice ; Female ; Fluorescent Antibody Technique, Indirect/methods ; Microscopy, Fluorescence/methods |
| Abstract: | Highly multiplexed immunofluorescence imaging methods advanced our understanding of biology across scales, from tissues down to molecules. By enabling the visualization of tens of proteins in a single sample, highly multiplexed imaging is especially relevant for scarce and challenging biospecimens like mammalian oocytes. However, most methods remain relatively costly and complex to implement. Here, we provide a cost-effective simple protocol, based on iterative indirect immunofluorescence imaging (4i), allowing to capture the distribution and abundance of tens of proteins in a single mouse oocyte. Our approach is adaptable to other mammalian oocytes or analogously large non-adherent cells like the early embryo. (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.) |
| References: | Giesen C, Wang HAO, Schapiro D et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422. https://doi.org/10.1038/nmeth.2869. (PMID: 10.1038/nmeth.2869) Lin JR, Fallahi-Sichani M, Sorger PK (2015) Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat Commun 6. https://doi.org/10.1038/ncomms9390. Angelo M, Bendall SC, Finck R et al (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20:436–442. https://doi.org/10.1038/nm.3488. (PMID: 10.1038/nm.3488) Chen KH, Boettiger AN, Moffitt JR et al (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 1979:348. https://doi.org/10.1126/science.aaa6090. (PMID: 10.1126/science.aaa6090) Gut G, Herrmann MD, Pelkmans L (2018) Multiplexed protein maps link subcellular organization to cellular states. Science 361:eaar7042. https://doi.org/10.1126/science.aar7042. (PMID: 10.1126/science.aar7042) Rovira-Clavé X, Jiang S, Bai Y et al (2021) Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging. Nat Commun 12. https://doi.org/10.1038/s41467-021-24822-1. Rovira-Clavé X, Drainas AP, Jiang S et al (2022) Spatial epitope barcoding reveals clonal tumor patch behaviors. Cancer Cell 40:1423–1439.e11. https://doi.org/10.1016/j.ccell.2022.09.014. (PMID: 10.1016/j.ccell.2022.09.014) Hickey JW, Neumann EK, Radtke AJ et al (2022) Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat Methods 19:284–295. https://doi.org/10.1038/s41592-021-01316-y. (PMID: 10.1038/s41592-021-01316-y) Roeles J, Tsiavaliaris G (2019) Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-12674-9. (PMID: 10.1038/s41467-019-12674-9) Zaffagnini G, Cheng S, Salzer MC et al (2024) Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 187:1109–1126.e21. https://doi.org/10.1016/j.cell.2024.01.031. (PMID: 10.1016/j.cell.2024.01.031) Yoshida S, Nishiyama S, Lister L et al (2020) Prc1-rich kinetochores are required for error-free acentrosomal spindle bipolarization during meiosis I in mouse oocytes. Nat Commun 11. https://doi.org/10.1038/s41467-020-16488-y. Al Jord A, Letort G, Chanet S et al (2022) Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nat Commun 13(5070):1–19. https://doi.org/10.1038/s41467-022-32675-5. (PMID: 10.1038/s41467-022-32675-5) Crozet F, Letort G, Bulteau R et al (2023) Filopodia-like protrusions of adjacent somatic cells shape the developmental potential of oocytes. Life Sci Alliance 6. https://doi.org/10.26508/lsa.202301963. Jentoft IMA, Bäuerlein FJB, Welp LM et al (2023) Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 186:5308–5327.e25. https://doi.org/10.1016/j.cell.2023.10.003. Mihajlović AI, Haverfield J, FitzHarris G (2021) Distinct classes of lagging chromosome underpin age-related oocyte aneuploidy in mouse. Dev Cell 56:2273–2283.e3. https://doi.org/10.1016/j.devcel.2021.07.022. (PMID: 10.1016/j.devcel.2021.07.022) So C, Menelaou K, Uraji J et al (1979) Mechanism of spindle pole organization and instability in human oocytes. Science 2022:375. https://doi.org/10.1126/science.abj3944. (PMID: 10.1126/science.abj3944) Kramer BA, del Castillo JS, Pelkmans L, Gut G (2023) Iterative indirect immunofluorescence imaging (4i) on adherent cells and tissue sections. Bio Protoc 13:10.21769/BioProtoc.4712. Maître JL, Turlier H, Illukkumbura R et al (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–348. https://doi.org/10.1038/nature18958. (PMID: 10.1038/nature18958) Domingo-Muelas A, Skory RM, Moverley AA et al (2023) Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 186:3166–3181.e18. https://doi.org/10.1016/j.cell.2023.06.003. (PMID: 10.1016/j.cell.2023.06.003) Letort G, Mailly P, Al Jord A, Almonacid M (2024) Capturing cytoskeleton-based agitation of the mouse oocyte nucleus across spatial scales. J Vis Exp 2024. https://doi.org/10.3791/65976. Almonacid M, Al Jord A, El-hayek S et al (2019) Active fluctuations of the nuclear envelope shape the transcriptional dynamics in oocytes. Dev Cell 51:145–157. https://doi.org/10.1016/j.devcel.2019.09.010. (PMID: 10.1016/j.devcel.2019.09.010) Liao JC, Roidert J, Jay DG (1994) Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59:284–289. https://doi.org/10.1111/j.1751-1097.1994.tb05035.x. (PMID: 10.1111/j.1751-1097.1994.tb05035.x) Yan P, Xiong Y, Chen B et al (2006) Fluorophore-assisted light inactivation of calmodulin involves singlet-oxygen mediated cross-linking and methionine oxidation. Biochemistry 45:4736–4748. https://doi.org/10.1021/bi052395a. (PMID: 10.1021/bi052395a) |
| Contributed Indexing: | Keywords: 4i; Germ cells; Iterative indirect immunofluorescence imaging; Mammalian oocyte; Meiosis I; Multiplex immunofluorescence; Multiplexed imaging; Non-adherent cells; Oocyte |
| Entry Date(s): | Date Created: 20250730 Date Completed: 20250730 Latest Revision: 20250730 |
| Update Code: | 20250731 |
| DOI: | 10.1007/978-1-0716-4658-8_13 |
| PMID: | 40736799 |
| Database: | MEDLINE |
| Abstract: | Highly multiplexed immunofluorescence imaging methods advanced our understanding of biology across scales, from tissues down to molecules. By enabling the visualization of tens of proteins in a single sample, highly multiplexed imaging is especially relevant for scarce and challenging biospecimens like mammalian oocytes. However, most methods remain relatively costly and complex to implement. Here, we provide a cost-effective simple protocol, based on iterative indirect immunofluorescence imaging (4i), allowing to capture the distribution and abundance of tens of proteins in a single mouse oocyte. Our approach is adaptable to other mammalian oocytes or analogously large non-adherent cells like the early embryo.<br /> (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.) |
|---|---|
| ISSN: | 1940-6029 |
| DOI: | 10.1007/978-1-0716-4658-8_13 |
Nájsť tento článok vo Web of Science