Automatic quantitative kinetic analysis in salivary gland scintigraphy.

Uložené v:
Podrobná bibliografia
Názov: Automatic quantitative kinetic analysis in salivary gland scintigraphy.
Autori: Anton Faria R; Department of Nuclear Medicine, A.C.Camargo Cancer Center, São Paulo, Brazil., Chagas Jaguar G, Nóbrega Pereira Lima E
Zdroj: Nuclear medicine communications [Nucl Med Commun] 2025 Nov 01; Vol. 46 (11), pp. 1104-1114. Date of Electronic Publication: 2025 Jul 28.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: Lippincott Williams & Wilkins Country of Publication: England NLM ID: 8201017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1473-5628 (Electronic) Linking ISSN: 01433636 NLM ISO Abbreviation: Nucl Med Commun Subsets: MEDLINE
Imprint Name(s): Publication: London : Lippincott Williams & Wilkins
Original Publication: London : Chapman and Hall in association with the British Nuclear Medicine Society, c1980-
Výrazy zo slovníka MeSH: Salivary Glands*/diagnostic imaging , Salivary Glands*/metabolism , Radionuclide Imaging* , Image Processing, Computer-Assisted*/methods, Humans ; Kinetics ; Automation ; Female ; Middle Aged ; Male
Abstrakt: Salivary gland scintigraphy (SGS) is a valuable imaging modality for assessing major salivary gland function, particularly in patients with Sjögren syndrome, and postradiotherapy conditions. Despite the existence of multiple quantitative analysis methods, clinical practice remains dominated by qualitative interpretation due to the lack of standardization, time-consuming procedures, and absence of user-friendly tools. In this study, we present a fully automated method for quantitative SGS analysis based on kinetic modeling of time-activity curves, implemented without altering standard imaging protocols, using a software we developed in-house on a Xeleris (GE HealthCare) workstation. The curves were segmented into uptake, excretion, and postexcretion phases, each fitted to specific kinetic models. From the fitted parameters, we derived functional variables, including vascular flow, active uptake, uptake velocity, total accumulation, absolute excretion, excretion fraction, and excretion rate. This approach enables rapid and reproducible extraction of functional data, with processing time under 5 s per study. We demonstrate its clinical utility through two case studies, highlighting how kinetic parameters reflect salivary gland function and its longitudinal changes. Our method bridges the gap between complex quantitative analysis and practical clinical application, offering a robust tool for monitoring disease progression and treatment response, potentially improving diagnostic reliability and research scalability.
(Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.)
References: Bellagambi FG, Lomonaco T, Salvo P, Vivaldi F, Hangouët M, Ghimenti S, et al. Saliva sampling: methods and devices. An overview. TRAC Trends Anal Chem 2020; 124:115781.
Kaldeway HP, ter Borg E-J, van de Garde EMW, Habraken JBA, van Buul MMC. Validation of quantitative salivary gland scintigraphy in relation to the American–European consensus criteria for Sjögren’s syndrome. Nucl Med Commun 2019; 40:343–348.
Kaviani H, Khayamzadeh M. The application of salivary gland scintigraphy in quantitative analysis of xerostomia as a frequent salivary gland dysfunction: a review article. J Contemp Med Sci 2019; 5:189–196.
Kim H-A, Yoon S-H, Yoon J-K, Lee SJ, Jo KS, Lee DH, et al. Salivary gland scintigraphy in Sjögren’s syndrome. Nuklearmedizin 2014; 53:139–145.
Schall GL, Anderson LG, Wolf RO, Herdt JR, Tarpley TM, Cummings NA, et al. Xerostomia in Sjögren’s syndrome. Evaluation by sequential salivary scintigraphy. JAMA 1971; 216:2109–2116.
Shizukuishi K, Takahashi N, Kawamoto M, Abe A, Jin L, Inoue T, et al. Scoring analysis of salivary gland scintigraphy in patients with Sjoegren’s syndrome. Ann Nucl Med 2003; 17:627–631.
De Rossi G, Focacci C. A computer-assisted method for semi-quantitative assessment of salivary gland diseases. Eur J Nucl Med 1980; 5:499–503.
Rosenthall L, Kaye M. Technetium-99m-pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 1975; 16:33–39.
Anton Faria R, Chagas Jaguar G, Nóbrega Pereira Lima E. Parametric imaging in salivary gland scintigraphy. Nucl Med Commun 2024; 45:1098–1104.
Vigh L, Carlsen O, Hartling OJ. Uptake index and stimulated salivary gland response in 99Tcm-pertechnetate salivary gland scintigraphy in normal subjects. Nucl Med Commun 1997; 18:363–366.
Afzelius P, Fuglsang S. A kinetic compartment model for evaluating salivary gland scintigraphies. Clin Physiol Funct Imaging 2014; 34:143–150.
Kinosada Y. New Quantitative Depiction of Salivary Gland Function Using a Combination of Scintigraphy and MRI. Chicago IL; 2009.
Malpani BL, Jaiswar RK, Samuel AM. Noninvasive scintigraphic method to quantify unstimulated secretions from individual salivary glands. Auris Nasus Larynx 1999; 26:453–456.
Box GEP. Robustness in the strategy of scientific model building. In: Launer RL, Wilkinson GN, editors. Robustness in Statistics. Academic Press; 1979. p. 201–36.
Akker HPVD. Aspects of Salivary Gland Scintigraphy with 99mtc-Pertechnetate. University of Amsterdam; 1988. https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/026/20026566.pdf .
Malpani BL, Samuel AM, Ray S. Differential kinetics of parotid and submandibular gland function as demonstrated by scintigraphic means and its possible implications. Nucl Med Commun 1995; 16:706–709.
Schneyer LH, Levin LK. Rate of secretion by individual salivary gland pairs of man under conditions of reduced exogenous stimulation. J Appl Physiol 1955; 7:508–512.
Kang JY, Jang SJ, Lee WW, Jang SJ, Lee YJ, Kim SE. Evaluation of salivary gland dysfunction using salivary gland scintigraphy in sjögren’s syndrome patients and in thyroid cancer patients after radioactive iodine therapy. Nucl Med Mol Imaging 2011; 45:161–168.
Hermann GA, Vivino FB, Shnier D, Krumm RP, Mayrin V, Shore JB. Variability of quantitative scintigraphic salivary indices in normal subjects. J Nucl Med 1998; 39:1260–1263.
Dugonjić S, Stefanović D, Ethurović B, Spasić-Jokić V, Ajdinović B. Evaluation of diagnostic parameters from parotid and submandibular dynamic salivary glands scintigraphy and unstimulated sialometry in Sjögren’s syndrome. Hell J Nucl Med 2014; 17:116–122.
Byeon HK, Jeong GC, Kim B, Lee Y, Park JH, Lee SM. Clinical utility of quantitative parameters of salivary gland scintigraphy for diagnosing burning mouth syndrome. Diagnostics (Basel) 2022; 12:2256.
Schall GL, Larson SM, Anderson LG, Griffith JM. Quantification of parotid gland uptake of pertechnetate using a gamma scintillation camera and a ‘region-of-interest’ system. Am J Roentgenol Radium Ther Nucl Med 1972; 115:689–697.
Chen Y-C, Dang LH, Chang W-W, Su C-H, Hung S-H. Impaired spontaneous secretion as a potential factor in the development of sialolithiasis in the submandibular gland: a preliminary sialoscintigraphic study. Laryngoscope Investig Otolaryngol 2022; 7:1329–1336.
Nishiyama S, Miyawaki S, Yoshinaga Y. A study to standardize quantitative evaluation of parotid gland scintigraphy in patients with Sjögren’s syndrome. J Rheumatol 2006; 33:2470–2474.
García-González M, González-Soto MJ, Gómez Rodríguez-Bethencourt MA, Ferraz-Amaro I. The validity of salivary gland scintigraphy in Sjögren’s syndrome diagnosis: comparison of visual and excretion fraction analyses. Clin Rheumatol 2021; 40:1923–1931.
Min H-K, Kim SH, Lee K-A, Jo J-H, So Y, Chung HW, et al. Correlation between salivary gland ultrasonography and scintigraphy in primary Sjögren’s Syndrome. Rheumatology (Oxford) 2021; 61:3414–3419.
Nomura K, Nakayama M, Okizaki A. Effects of apitherapy against salivary gland disorder after radioactive iodine therapy for differentiated thyroid cancer. Ann Nucl Med 2023; 37:462–469.
Sahoo B, Padhi S, Patra AC, Mahapatra BR, Mishra T, Mishra SR, Patro KC. A prospective cohort study analyzing radiation-induced xerostomia and quality of life of head and neck cancer patients treated with intensity-modulated radiotherapy and 3D conformal radiotherapy techniques at a tertiary cancer center in eastern India. Cureus 2023; 15:e36442.
Proctor GB, Shaalan AM. Disease-induced changes in salivary gland function and the composition of saliva. J Dent Res 2021; 100:1201–1209.
Hug I. Die nuklearmedizinische Funktionsdiagnostik der Parotis: I. Die Funktion der normalen Parotis. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 1973; 119:165–174.
Havlik E, Scherak O, Bergmann H, Kolarz G. Technetiumspeicherung der Parotis. Nuklearmedizin 1976; 15:142–145.
Helman J, Turner RJ, Fox PC, Baum BJ. 99mTc-pertechnetate uptake in parotid acinar cells by the Na+/K+/Cl- co-transport system. J Clin Invest 1987; 79:1310–1313.
Varga G. Physiology of the salivary glands. Surgery (Oxford) 2015; 30:578–583.
Aung W, Murata Y, Ishida R, Takahashi Y, Okada N, Shibuya H. Study of quantitative oral radioactivity in salivary gland scintigraphy and determination of the clinical stage of Sjögren’s syndrome. J Nucl Med 2001; 42:38–43.
Lowe VJ, Hoffman JM, DeLong DM, Patz EF, Coleman RE. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med. 1994; 35:1771–1776.
Keyes JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995; 36:1836–1839.
Kinahan PE, Fletcher JW. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 2010; 31:496–505.
Kim Y-M, Choi J-S, Hong SB, Hyun IY, Lim J-Y. Salivary gland function after sialendoscopy for treatment of chronic radioiodine-induced sialadenitis. Head Neck 2016; 38:51–58.
Lakshmi Nair S, Faizal B, Hari H. A prospective study of recovery of salivary gland function after calculus removal by sialendoscopy. Indian J Otolaryngol Head Neck Surg 2023; 75:88–93.
van den Akker HP, Busemann-Sokole E. Submandibular gland function following transoral sialolithectomy. Oral Surg Oral Med Oral Pathol 1983; 56:351–356.
Bohuslavizki KH, Klutmann S, Bleckmann C, Brenner W, Lassmann S, Mester J, et al. Salivary gland protection by amifostine in high-dose radioiodine therapy of differentiated thyroid cancer. Strahlenther Onkol 1999; 175:57–61.
Mahajan S, Grewal RK, Friedman KP, Schöder H, Pandit-Taskar N. Assessment of salivary gland function after 177Lu-PSMA radioligand therapy: current concepts in imaging and management. Transl Oncol 2022; 21:101445.
Langbein T, Chaussé G, Baum RP. Salivary gland toxicity of PSMA radioligand therapy: relevance and preventive strategies. J Nucl Med 2018; 59:1172–1173.
Feuerecker B, Tauber R, Knorr K, Heck M, Beheshti A, Seidl C, et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol 2021; 79:343–350.
Contributed Indexing: Keywords: medical image processing; salivary glands; scintigraphy
Entry Date(s): Date Created: 20250728 Date Completed: 20251009 Latest Revision: 20251009
Update Code: 20251010
DOI: 10.1097/MNM.0000000000002037
PMID: 40717667
Databáza: MEDLINE
Popis
Abstrakt:Salivary gland scintigraphy (SGS) is a valuable imaging modality for assessing major salivary gland function, particularly in patients with Sjögren syndrome, and postradiotherapy conditions. Despite the existence of multiple quantitative analysis methods, clinical practice remains dominated by qualitative interpretation due to the lack of standardization, time-consuming procedures, and absence of user-friendly tools. In this study, we present a fully automated method for quantitative SGS analysis based on kinetic modeling of time-activity curves, implemented without altering standard imaging protocols, using a software we developed in-house on a Xeleris (GE HealthCare) workstation. The curves were segmented into uptake, excretion, and postexcretion phases, each fitted to specific kinetic models. From the fitted parameters, we derived functional variables, including vascular flow, active uptake, uptake velocity, total accumulation, absolute excretion, excretion fraction, and excretion rate. This approach enables rapid and reproducible extraction of functional data, with processing time under 5 s per study. We demonstrate its clinical utility through two case studies, highlighting how kinetic parameters reflect salivary gland function and its longitudinal changes. Our method bridges the gap between complex quantitative analysis and practical clinical application, offering a robust tool for monitoring disease progression and treatment response, potentially improving diagnostic reliability and research scalability.<br /> (Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.)
ISSN:1473-5628
DOI:10.1097/MNM.0000000000002037