The Reciprocal Relationship Between Cell Adhesion Molecules and Reactive Oxygen Species.

Uložené v:
Podrobná bibliografia
Názov: The Reciprocal Relationship Between Cell Adhesion Molecules and Reactive Oxygen Species.
Autori: Al-Hadi M; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia., Nikonenko AG; Department of Cytology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine., Sytnyk V; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
Zdroj: Cells [Cells] 2025 Jul 17; Vol. 14 (14). Date of Electronic Publication: 2025 Jul 17.
Spôsob vydávania: Journal Article; Review
Jazyk: English
Informácie o časopise: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101600052 Publication Model: Electronic Cited Medium: Internet ISSN: 2073-4409 (Electronic) Linking ISSN: 20734409 NLM ISO Abbreviation: Cells Subsets: MEDLINE
Imprint Name(s): Original Publication: Basel, Switzerland : MDPI
Výrazy zo slovníka MeSH: Reactive Oxygen Species*/metabolism , Cell Adhesion Molecules*/metabolism, Humans ; Animals ; Cell Adhesion ; Signal Transduction
Abstrakt: Cell adhesion molecules (CAMs) are cell-surface-localized proteins mediating interactions of cells with other cells and the extracellular matrix. CAMs influence cell behavior and survival by inducing various intracellular signaling cascades that regulate diverse cellular processes including cytoskeleton remodeling and gene expression. Here, we review the evidence demonstrating that the levels, subcellular distribution, and binding affinities of CAMs of several major families including integrins, cadherins, immunoglobulin superfamily, and selectins are regulated by intracellularly generated or extracellular reactive oxygen species (ROS). Remarkably, CAMs themselves induce ROS production in response to binding to their ligands by activating lipoxygenases or NADPH oxidases or influencing ROS generation in mitochondria. CAM-dependent ROS production is essential for CAM-mediated cell adhesion and CAM-dependent intracellular signaling. Importantly, CAMs also protect cells from the ROS-induced cell death by stimulating the synthesis of antioxidants and suppressing the cell death signaling. A better understanding of the role ROS play in controlling CAM functions and mechanisms of this control may pave the way to modulating the functions of CAMs in various disorders associated with abnormal cell adhesion.
References: Front Mol Neurosci. 2020 Nov 12;13:592126. (PMID: 33281551)
J Pharmacol Exp Ther. 2003 May;305(2):573-80. (PMID: 12606638)
Carcinogenesis. 2008 Dec;29(12):2267-78. (PMID: 18791199)
Oncol Rep. 2014 Nov;32(5):2150-8. (PMID: 25174950)
Immunology. 2000 Nov;101(3):412-8. (PMID: 11106946)
Sci Rep. 2021 Jun 29;11(1):13493. (PMID: 34188159)
Trends Neurosci. 2009 Jul;32(7):402-12. (PMID: 19541375)
Biochim Biophys Acta Mol Cell Res. 2021 Nov;1868(12):119122. (PMID: 34425130)
Eur J Immunol. 2019 Mar;49(3):386-397. (PMID: 30443903)
Antioxid Redox Signal. 2019 Sep 20;31(9):591-593. (PMID: 31084372)
Biol Pharm Bull. 2012;35(4):624-8. (PMID: 22466571)
Cell Physiol Biochem. 2019;52(6):1398-1411. (PMID: 31075190)
Nat Rev Mol Cell Biol. 2007 Sep;8(9):722-8. (PMID: 17700625)
Free Radic Biol Med. 2020 Mar;149:8-22. (PMID: 31669759)
Antioxid Redox Signal. 2007 Apr;9(4):469-81. (PMID: 17280488)
Biol Res. 2024 Dec 19;57(1):98. (PMID: 39696702)
Int Immunol. 2007 Dec;19(12):1349-59. (PMID: 17977815)
Toxicology. 2007 Jul 17;236(3):208-16. (PMID: 17537562)
Biochem Mol Biol Int. 1995 Sep;37(1):193-200. (PMID: 8653083)
Mol Cell Biol. 2005 Aug;25(15):6391-403. (PMID: 16024778)
Biochim Biophys Acta. 1996 Feb 29;1310(3):251-9. (PMID: 8599602)
Neuroscientist. 2020 Oct-Dec;26(5-6):415-437. (PMID: 32449484)
J Cell Sci. 2018 May 8;131(9):. (PMID: 29632241)
PLoS One. 2012;7(12):e52404. (PMID: 23272240)
Acta Biomater. 2022 Sep 1;149:273-286. (PMID: 35764240)
Front Cell Dev Biol. 2016 Feb 16;4:9. (PMID: 26909348)
Cancer Lett. 2019 Jun 28;452:132-143. (PMID: 30905813)
Arterioscler Thromb Vasc Biol. 2021 May 5;41(5):1638-1653. (PMID: 33691478)
Cancer Res. 2024 Sep 4;84(17):2820-2835. (PMID: 38959339)
J Mol Cell Cardiol. 2014 Jan;66:18-26. (PMID: 24445059)
Cell Signal. 2014 Jun;26(6):1326-34. (PMID: 24631528)
Neural Plast. 2016;2016:6427537. (PMID: 27242933)
Free Radic Biol Med. 2010 Sep 15;49(6):1119-28. (PMID: 20633529)
Exp Cell Res. 2003 Apr 15;285(1):59-71. (PMID: 12681287)
Free Radic Biol Med. 2016 Jan;90:145-57. (PMID: 26603095)
Cell Mol Life Sci. 2021 Jan;78(1):93-116. (PMID: 32613283)
Oncol Rep. 2007 Oct;18(4):965-71. (PMID: 17786361)
Am J Physiol. 1998 Sep;275(3):L533-44. (PMID: 9728048)
Free Radic Biol Med. 2012 Aug 1;53(3):521-31. (PMID: 22659335)
Nature. 2016 Nov 24;539(7630):575-578. (PMID: 27828948)
Exp Neurobiol. 2015 Dec;24(4):325-40. (PMID: 26713080)
J Biol Chem. 2012 Jul 20;287(30):25292-302. (PMID: 22648416)
Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2423-2434. (PMID: 30354218)
Aging Cell. 2016 Dec;15(6):1140-1152. (PMID: 27709751)
Neurochem Res. 2021 Jan;46(1):77-87. (PMID: 33439432)
Genes Cells. 2009 Jun;14(6):703-16. (PMID: 19422420)
Nature. 1991 Oct 17;353(6345):668-70. (PMID: 1922386)
Am J Physiol Heart Circ Physiol. 2002 Nov;283(5):H2054-61. (PMID: 12384485)
Cancer Res. 2013 Jun 15;73(12):3737-48. (PMID: 23576567)
Life Sci. 2024 Apr 1;342:122510. (PMID: 38387701)
J Cell Biol. 2017 Dec 4;216(12):4287-4297. (PMID: 28972104)
J Cell Biol. 2002 Jul 22;158(2):357-68. (PMID: 12119354)
PLoS One. 2013 Dec 02;8(12):e81930. (PMID: 24349153)
Cell. 2014 Sep 11;158(6):1293-1308. (PMID: 25215488)
Proc Assoc Am Physicians. 1998 Sep-Oct;110(5):412-21. (PMID: 9756092)
J Vasc Res. 2004 Sep-Oct;41(5):432-44. (PMID: 15479985)
J Biol Chem. 2010 Aug 6;285(32):25062-73. (PMID: 20529870)
Nat Cell Biol. 2010 Jul;12(7):676-85. (PMID: 20526329)
Cell Death Differ. 2008 May;15(5):867-78. (PMID: 18259192)
J Biol Chem. 2009 Sep 18;284(38):25602-11. (PMID: 19633358)
Am J Pathol. 2004 Aug;165(2):617-30. (PMID: 15277235)
Free Radic Res. 2007 Jul;41(7):812-22. (PMID: 17577742)
Biomaterials. 2013 May;34(15):3807-15. (PMID: 23465490)
Biochem Biophys Res Commun. 1988 Dec 15;157(2):443-9. (PMID: 2904811)
FASEB J. 2001 Feb;15(2):303-5. (PMID: 11156944)
Antioxid Redox Signal. 2021 Nov 20;35(15):1291-1307. (PMID: 33637016)
Small GTPases. 2014;5:e27958. (PMID: 24607953)
Signal Transduct Target Ther. 2017 Aug 18;2:17036. (PMID: 29263924)
Annu Rev Neurosci. 2007;30:451-74. (PMID: 17600523)
Front Mol Neurosci. 2017 Nov 15;10:378. (PMID: 29249937)
Dev Cell. 2011 Feb 15;20(2):233-43. (PMID: 21316590)
Mol Cell Neurosci. 2012 Jun;50(2):169-78. (PMID: 22503709)
Biochem Pharmacol. 2013 Jan 15;85(2):245-56. (PMID: 23142710)
J Immunol. 2013 Feb 15;190(4):1551-9. (PMID: 23319734)
Sci Rep. 2017 Nov 9;7(1):15140. (PMID: 29123322)
Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1651-1665. (PMID: 30954555)
Life Sci. 2021 Nov 15;285:119954. (PMID: 34520770)
Cell. 1996 Feb 9;84(3):345-57. (PMID: 8608588)
EMBO J. 2007 Mar 7;26(5):1257-67. (PMID: 17318182)
Physiol Rev. 2013 Jul;93(3):1317-542. (PMID: 23899566)
Biochim Biophys Acta. 2008 May;1783(5):886-95. (PMID: 18241674)
Prostate. 2024 Dec;84(16):1434-1447. (PMID: 39154281)
Science. 1998 May 8;280(5365):898-902. (PMID: 9572733)
Free Radic Biol Med. 2011 Aug 1;51(3):609-18. (PMID: 21620958)
Blood. 2004 Nov 15;104(10):3214-20. (PMID: 15271797)
PLoS One. 2014 Sep 16;9(9):e107768. (PMID: 25226030)
Cell Metab. 2021 Jul 6;33(7):1322-1341.e13. (PMID: 34019840)
Int J Mol Sci. 2022 Apr 14;23(8):. (PMID: 35457156)
J Biol Chem. 2003 Mar 7;278(10):8516-25. (PMID: 12496265)
Mol Biol Cell. 2014 Oct 1;25(19):2948-55. (PMID: 25057020)
Oxid Med Cell Longev. 2022 Oct 19;2022:1225578. (PMID: 36312897)
BMC Mol Cell Biol. 2020 Apr 17;21(1):30. (PMID: 32303178)
J Cell Biol. 2005 Jan 3;168(1):127-39. (PMID: 15623578)
Cancer Lett. 2015 Aug 10;364(2):165-72. (PMID: 25979232)
J Cell Biol. 2003 Jun 9;161(5):933-44. (PMID: 12796479)
J Cell Physiol. 1999 Aug;180(2):182-9. (PMID: 10395288)
J Biol Chem. 1993 Jan 15;268(2):1187-93. (PMID: 7678251)
Int J Biol Macromol. 2019 Feb 15;123:1035-1043. (PMID: 30399378)
Int J Mol Sci. 2023 Jan 04;24(2):. (PMID: 36674445)
J Neurochem. 2005 Feb;92(4):705-17. (PMID: 15686472)
Cells. 2019 Sep 20;8(10):. (PMID: 31547193)
J Clin Invest. 2003 Dec;112(11):1732-40. (PMID: 14660749)
Trends Neurosci. 2017 May;40(5):295-308. (PMID: 28359630)
Nature. 2019 Sep;573(7774):439-444. (PMID: 31485072)
Brain Res Bull. 2020 Sep;162:141-150. (PMID: 32540419)
Mol Cancer Ther. 2017 Jan;16(1):205-216. (PMID: 27811009)
Cells. 2024 Nov 19;13(22):. (PMID: 39594667)
Antioxidants (Basel). 2021 Feb 19;10(2):. (PMID: 33669824)
Sci Signal. 2023 Oct 31;16(809):eadf8299. (PMID: 37906629)
J Cell Sci. 2002 May 1;115(Pt 9):1837-46. (PMID: 11956315)
Cancer Res. 2004 Oct 15;64(20):7464-72. (PMID: 15492271)
Nature. 2024 Mar;627(8002):189-195. (PMID: 38355798)
Nature. 2019 Aug;572(7769):402-406. (PMID: 31341276)
Cell Death Differ. 2001 Aug;8(8):776-84. (PMID: 11526430)
Semin Cell Dev Biol. 2018 Aug;80:43-49. (PMID: 28899716)
J Clin Invest. 1993 Oct;92(4):1866-74. (PMID: 7691889)
J Biol Chem. 2012 May 18;287(21):17161-17175. (PMID: 22431726)
Free Radic Biol Med. 2020 Jul;154:33-47. (PMID: 32370993)
Antioxidants (Basel). 2020 Mar 10;9(3):. (PMID: 32164274)
Nat Rev Mol Cell Biol. 2023 Feb;24(2):142-161. (PMID: 36168065)
Free Radic Biol Med. 2019 Jan;130:82-98. (PMID: 30342187)
J Neurosci. 2015 Jan 28;35(4):1739-52. (PMID: 25632147)
Biophys Rev. 2014 Jun;6(2):203-213. (PMID: 28510180)
Eur J Immunol. 1999 Nov;29(11):3419-31. (PMID: 10556796)
J Neurosci. 2013 Jan 9;33(2):790-803. (PMID: 23303955)
Cell Death Dis. 2021 Jan 11;12(1):58. (PMID: 33431811)
Mol Cell Biol. 2007 May;27(9):3313-26. (PMID: 17339338)
Oxid Med Cell Longev. 2021 Aug 14;2021:9993704. (PMID: 34426761)
Trends Cell Biol. 2012 Feb;22(2):107-15. (PMID: 22209517)
PLoS One. 2014 Jul 03;9(7):e101815. (PMID: 24992685)
Front Biosci (Landmark Ed). 2011 Jan 01;16(5):1986-95. (PMID: 21196278)
Front Cell Dev Biol. 2021 Sep 07;9:716406. (PMID: 34557488)
Chin Med J (Engl). 2009 Feb 5;122(3):338-43. (PMID: 19236815)
J Clin Invest. 2003 Mar;111(5):691-9. (PMID: 12618523)
FASEB J. 2005 Oct;19(12):1737-9. (PMID: 16099944)
J Immunol. 2002 Dec 15;169(12):7078-86. (PMID: 12471144)
Autophagy. 2023 Jan;19(1):54-74. (PMID: 35403545)
Contributed Indexing: Keywords: cadherin; cell adhesion molecule; cell death; immunoglobulin superfamily; integrin; reactive oxygen species; selectin
Substance Nomenclature: 0 (Reactive Oxygen Species)
0 (Cell Adhesion Molecules)
Entry Date(s): Date Created: 20250725 Date Completed: 20250725 Latest Revision: 20250729
Update Code: 20250729
PubMed Central ID: PMC12293960
DOI: 10.3390/cells14141098
PMID: 40710351
Databáza: MEDLINE
Popis
Abstrakt:Cell adhesion molecules (CAMs) are cell-surface-localized proteins mediating interactions of cells with other cells and the extracellular matrix. CAMs influence cell behavior and survival by inducing various intracellular signaling cascades that regulate diverse cellular processes including cytoskeleton remodeling and gene expression. Here, we review the evidence demonstrating that the levels, subcellular distribution, and binding affinities of CAMs of several major families including integrins, cadherins, immunoglobulin superfamily, and selectins are regulated by intracellularly generated or extracellular reactive oxygen species (ROS). Remarkably, CAMs themselves induce ROS production in response to binding to their ligands by activating lipoxygenases or NADPH oxidases or influencing ROS generation in mitochondria. CAM-dependent ROS production is essential for CAM-mediated cell adhesion and CAM-dependent intracellular signaling. Importantly, CAMs also protect cells from the ROS-induced cell death by stimulating the synthesis of antioxidants and suppressing the cell death signaling. A better understanding of the role ROS play in controlling CAM functions and mechanisms of this control may pave the way to modulating the functions of CAMs in various disorders associated with abnormal cell adhesion.
ISSN:2073-4409
DOI:10.3390/cells14141098