Leveraging microbial ecology for mosquito-borne disease control.
Gespeichert in:
| Titel: | Leveraging microbial ecology for mosquito-borne disease control. |
|---|---|
| Autoren: | Nichols HL; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA., Coon KL; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA. Electronic address: kerri.coon@wisc.edu. |
| Quelle: | Trends in parasitology [Trends Parasitol] 2025 Aug; Vol. 41 (8), pp. 670-684. Date of Electronic Publication: 2025 Jul 17. |
| Publikationsart: | Journal Article; Review |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: Elsevier Science Country of Publication: England NLM ID: 100966034 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-5007 (Electronic) Linking ISSN: 14714922 NLM ISO Abbreviation: Trends Parasitol Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Oxford, UK : Elsevier Science, c2001- |
| MeSH-Schlagworte: | Vector Borne Diseases*/prevention & control , Vector Borne Diseases*/transmission , Mosquito Vectors*/microbiology , Microbiota* , Mosquito Control*/methods , Culicidae*/microbiology, Animals ; Humans ; Mosquito-Borne Diseases |
| Abstract: | Competing Interests: Declaration of interests The authors declare no competing interests. Mosquitoes transmit pathogens causing 700 000 deaths annually. Microbe-based vector control, which reduces vector populations or blocks pathogen development within vectors, offers an innovative way to lower global morbidity and mortality due to vector-borne disease. This review addresses challenges hindering the widespread adoption of microbe-based vector control in mosquitoes. We consider understudied transmission routes of mosquito-associated microbiota, factors affecting colonization and persistence of candidate microbial control agents in mosquito hosts, and the need for robust tools and methodologies to validate that observations in laboratory populations can be reliably extended to field populations. We highlight how understanding the microbial ecology underlying interactions between mosquitoes and their native microbiota can guide successful vector control efforts in these and other arthropod disease vectors. (Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.) |
| References: | PLoS Negl Trop Dis. 2020 Aug 18;14(8):e0008542. (PMID: 32810151) iScience. 2020 Aug 21;23(9):101486. (PMID: 32891883) PLoS Pathog. 2011 Oct;7(10):e1002299. (PMID: 21998591) Appl Environ Microbiol. 2012 Sep;78(17):6327-36. (PMID: 22773631) Parasit Vectors. 2022 Feb 19;15(1):63. (PMID: 35183231) Parasit Vectors. 2024 Feb 17;17(1):69. (PMID: 38368353) Appl Environ Microbiol. 2023 Sep 28;89(9):e0077823. (PMID: 37681948) Malar J. 2021 Jan 13;20(1):40. (PMID: 33441101) Science. 2024 Apr 19;384(6693):eadn9524. (PMID: 38669573) PLoS Negl Trop Dis. 2023 Nov 30;17(11):e0011713. (PMID: 38032857) Chembiochem. 2020 May 4;21(9):1279-1284. (PMID: 31845464) PLoS Pathog. 2006 Jun;2(6):e56. (PMID: 16789834) Science. 2019 May 31;364(6443):894-897. (PMID: 31147521) Nat Microbiol. 2021 Jun;6(6):806-817. (PMID: 33958765) Elife. 2022 Apr 26;11:. (PMID: 35471187) Viruses. 2024 Nov 30;16(12):. (PMID: 39772178) BMC Biol. 2023 Apr 26;21(1):97. (PMID: 37101136) BMC Genomics. 2024 Apr 9;25(1):353. (PMID: 38594632) PLoS One. 2022 Sep 1;17(9):e0273568. (PMID: 36048823) Science. 2018 Sep 21;361(6408):. (PMID: 30237322) Sci Rep. 2013;3:1641. (PMID: 23571408) Parasit Vectors. 2015 Jan 21;8:36. (PMID: 25604581) PLoS Negl Trop Dis. 2017 Jul 28;11(7):e0005677. (PMID: 28753661) Nat Rev Microbiol. 2019 May;17(5):284-294. (PMID: 30923350) Microorganisms. 2021 Jul 31;9(8):. (PMID: 34442721) Front Microbiol. 2021 Jun 08;12:650743. (PMID: 34168624) Microorganisms. 2024 Mar 08;12(3):. (PMID: 38543596) Trends Parasitol. 2020 May;36(5):473-484. (PMID: 32298634) PLoS Negl Trop Dis. 2023 Apr 5;17(4):e0011234. (PMID: 37018374) PLoS Negl Trop Dis. 2019 Dec 2;13(12):e0007883. (PMID: 31790395) Cell Host Microbe. 2024 Jun 12;32(6):820-836. (PMID: 38870899) J Theor Biol. 2022 Jun 7;542:111110. (PMID: 35364056) Appl Environ Microbiol. 2023 Dec 21;89(12):e0095923. (PMID: 38014951) PLoS Negl Trop Dis. 2024 Mar 14;18(3):e0012022. (PMID: 38484041) PLoS Biol. 2025 Mar 18;23(3):e3003078. (PMID: 40100886) Microorganisms. 2022 Feb 01;10(2):. (PMID: 35208787) ISME J. 2014 Mar;8(3):552-563. (PMID: 24088627) Appl Environ Microbiol. 2024 Oct 23;90(10):e0081824. (PMID: 39291984) Viruses. 2024 Jul 15;16(7):. (PMID: 39066296) Biol Lett. 2023 Feb;19(2):20220365. (PMID: 36789530) Mol Ecol. 2014 Jun;23(11):2727-39. (PMID: 24766707) Malar J. 2016 Aug 22;15(1):425. (PMID: 27549662) Microb Ecol. 2024 Dec 17;87(1):154. (PMID: 39681734) Insects. 2022 Feb 21;13(2):. (PMID: 35206789) Wellcome Open Res. 2023 Sep 26;8:267. (PMID: 37799509) Science. 2010 May 21;328(5981):994-9. (PMID: 20489017) Parasit Vectors. 2016 Mar 10;9:140. (PMID: 26965746) Nat Microbiol. 2023 May;8(5):973-985. (PMID: 36997797) Parasit Vectors. 2025 Jan 29;18(1):32. (PMID: 39881388) Microbiome. 2022 Apr 11;10(1):58. (PMID: 35410630) J Immunol. 2021 Oct 1;207(7):1703-1709. (PMID: 34544812) Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):. (PMID: 33827929) PLoS Biol. 2024 Nov 15;22(11):e3002897. (PMID: 39546548) Parasit Vectors. 2015 May 17;8:278. (PMID: 25981386) Nat Microbiol. 2022 Aug;7(8):1141-1150. (PMID: 35927448) Microbiologyopen. 2013 Aug;2(4):576-94. (PMID: 23907990) Sci Rep. 2018 Feb 1;8(1):2084. (PMID: 29391526) Curr Biol. 2008 Dec 9;18(23):R1087-8. (PMID: 19081038) Nat Rev Microbiol. 2023 Jun;21(6):347-360. (PMID: 36539611) Cell Host Microbe. 2023 Oct 11;31(10):1655-1667.e6. (PMID: 37738984) Parasit Vectors. 2021 Oct 17;14(1):539. (PMID: 34657608) Lancet Microbe. 2024 May;5(5):e422-e432. (PMID: 38342109) Appl Environ Microbiol. 2012 Nov;78(21):7760-8. (PMID: 22941073) Mol Ecol. 2017 Sep;26(17):4536-4550. (PMID: 28667798) Microbiologyopen. 2023 Jun;12(3):e1364. (PMID: 37379424) J Exp Biol. 2017 Sep 15;220(Pt 18):3355-3362. (PMID: 28931720) Sci Rep. 2020 Jul 2;10(1):10880. (PMID: 32616765) Microorganisms. 2021 Jul 26;9(8):. (PMID: 34442667) Int J Mol Sci. 2025 Feb 21;26(5):. (PMID: 40076478) Microbiome. 2021 May 18;9(1):111. (PMID: 34006334) Environ Microbiol. 2024 Feb;26(2):e16576. (PMID: 38192175) Microbiol Spectr. 2024 Nov 12;:e0056724. (PMID: 39530680) Microb Ecol. 2010 Oct;60(3):644-54. (PMID: 20571792) PLoS Negl Trop Dis. 2023 Mar 29;17(3):e0011218. (PMID: 36989328) PLoS Pathog. 2014 Oct 23;10(10):e1004398. (PMID: 25340821) Proc Biol Sci. 2015 Apr 7;282(1804):20142957. (PMID: 25740892) Cell Host Microbe. 2021 Jun 9;29(6):879-893. (PMID: 33945798) Sci Rep. 2020 Apr 28;10(1):7144. (PMID: 32346047) Bull Math Biol. 2019 Jul;81(7):2569-2595. (PMID: 31161557) Cell Host Microbe. 2019 Jan 9;25(1):101-112.e5. (PMID: 30595552) Acta Trop. 2020 Jan;201:105204. (PMID: 31574253) Microbiol Spectr. 2023 Feb 14;11(1):e0433022. (PMID: 36511662) Dev Comp Immunol. 2018 Apr;81:116-126. (PMID: 29174605) Parasit Vectors. 2021 Dec 1;14(1):592. (PMID: 34852835) Science. 2017 Sep 29;357(6358):1399-1402. (PMID: 28963255) ISME J. 2021 Jan;15(1):93-108. (PMID: 32895494) FEBS Lett. 2015 Sep 14;589(19 Pt B):2784-90. (PMID: 26318755) Science. 2023 Aug 4;381(6657):533-540. (PMID: 37535741) |
| Grant Information: | U01 AI184909 United States AI NIAID NIH HHS |
| Contributed Indexing: | Keywords: colonization resistance; horizontal transmission; microbiota transplantation; paratransgenesis; vertical transmission |
| Entry Date(s): | Date Created: 20250718 Date Completed: 20250807 Latest Revision: 20250808 |
| Update Code: | 20250808 |
| PubMed Central ID: | PMC12320179 |
| DOI: | 10.1016/j.pt.2025.06.010 |
| PMID: | 40681451 |
| Datenbank: | MEDLINE |
| Abstract: | Competing Interests: Declaration of interests The authors declare no competing interests.<br />Mosquitoes transmit pathogens causing 700 000 deaths annually. Microbe-based vector control, which reduces vector populations or blocks pathogen development within vectors, offers an innovative way to lower global morbidity and mortality due to vector-borne disease. This review addresses challenges hindering the widespread adoption of microbe-based vector control in mosquitoes. We consider understudied transmission routes of mosquito-associated microbiota, factors affecting colonization and persistence of candidate microbial control agents in mosquito hosts, and the need for robust tools and methodologies to validate that observations in laboratory populations can be reliably extended to field populations. We highlight how understanding the microbial ecology underlying interactions between mosquitoes and their native microbiota can guide successful vector control efforts in these and other arthropod disease vectors.<br /> (Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.) |
|---|---|
| ISSN: | 1471-5007 |
| DOI: | 10.1016/j.pt.2025.06.010 |
Full Text Finder
Nájsť tento článok vo Web of Science