Recent Insights Into Targeting Interleukin-27 in Coronary Artery Disease.

Saved in:
Bibliographic Details
Title: Recent Insights Into Targeting Interleukin-27 in Coronary Artery Disease.
Authors: Liang WL; Department of Cardiology, Guangyuan Hospital of Chinese Medicine, Guangyuan, China., Liu L; Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China., Liang B; Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China. liangbo1993@tmmu.edu.cn.
Source: Journal of cardiovascular translational research [J Cardiovasc Transl Res] 2025 Oct; Vol. 18 (5), pp. 1088-1099. Date of Electronic Publication: 2025 Jul 07.
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: Springer Country of Publication: United States NLM ID: 101468585 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1937-5395 (Electronic) Linking ISSN: 19375387 NLM ISO Abbreviation: J Cardiovasc Transl Res Subsets: MEDLINE
Imprint Name(s): Original Publication: New York, NY : Springer
MeSH Terms: Coronary Artery Disease*/metabolism , Coronary Artery Disease*/drug therapy , Coronary Artery Disease*/immunology , Coronary Artery Disease*/pathology , Interleukins*/metabolism , Interleukins*/immunology , Inflammation Mediators*/metabolism , Inflammation Mediators*/antagonists & inhibitors , Inflammation Mediators*/immunology , Anti-Inflammatory Agents*/therapeutic use , Anti-Inflammatory Agents*/adverse effects , Interleukin-27*/metabolism , Interleukin-27*/antagonists & inhibitors, Humans ; Signal Transduction/drug effects ; Inflammasomes/metabolism ; Inflammasomes/immunology ; Animals ; Molecular Targeted Therapy ; NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
Abstract: Competing Interests: Declarations. Conflict of interest: The authors declare that they have no conflict of interest. Ethics approval and Consent to Participate: Not applicable.
Coronary artery disease (CAD) is increasingly recognized as a chronic inflammatory condition. Interleukin-27 (IL-27), a cytokine from the IL-12 and IL-6 families, plays a dual role in CAD pathogenesis. It exacerbates disease by interacting with IL-1β and activating the NLRP3 inflammasome, promoting inflammation and tissue damage. Conversely, IL-27 can delay disease progression by engaging STAT1/3 signalling, suppressing inflammation, and promoting tissue repair. Future research should focus on elucidating IL-27's specific biological functions, interactions with molecular targets, and clinical implications in CAD. This will enhance understanding of CAD and support the development of improved diagnostic and therapeutic strategies.
(© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999 340(2):115–26. (PMID: 988716410.1056/NEJM199901143400207)
Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021 18(9):666–82. (PMID: 33958774810093810.1038/s41569-021-00552-1)
He X, Liang B, Gu N. Th17/Treg Imbalance and Atherosclerosis. Dis Markers. 2020;2020:8821029. (PMID: 33193911764871110.1155/2020/8821029)
Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38. (PMID: 19942084283416910.1016/j.jacc.2009.09.009)
Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12. (PMID: 2132159410.1038/ni.2001)
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells. 2021;10(8):1985. (PMID: 34440753839444010.3390/cells10081985)
Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 2002;16(6):779–90. (PMID: 1212166010.1016/S1074-7613(02)00324-2)
Morita Y, Masters EA, Schwarz EM, et al. Interleukin-27 and Its Diverse Effects on Bacterial Infections. Front Immunol. 2021;12. (PMID: 34079555816526210.3389/fimmu.2021.678515)
Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–43. (PMID: 2586197710.1146/annurev-immunol-032414-112134)
Chihara N, Madi A, Kondo T, et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature. 2018 558(7710):454–9. (PMID: 29899446613091410.1038/s41586-018-0206-z)
Gerhardt L, Hong MMY, Yousefi Y, et al. IL-12 and IL-27 Promote CD39 Expression on CD8+ T Cells and Differentially Regulate the CD39+CD8+ T Cell Phenotype. J Immunol. 2023 210(10):1598–606. (PMID: 370004611015203810.4049/jimmunol.2200897)
DeLong JH, O’Hara Hall A, Rausch M, et al. IL-27 and TCR Stimulation Promote T Cell Expression of Multiple Inhibitory Receptors. Immunohorizons. 2019 3(1):13–25. (PMID: 3135617310.4049/immunohorizons.1800083)
Sarin R, Gu R, Jalali Z, et al. IL-27 attenuates IL-23 mediated inflammatory arthritis. Clin Immunol. 2023 251. (PMID: 370372681020569210.1016/j.clim.2023.109327)
Jouhault Q, Cherqaoui B, Jobart-Malfait A, et al. Interleukin 27 is a novel cytokine with anti-inflammatory effects against spondyloarthritis through the suppression of Th17 responses. Front Immunol. 2022;13:1072420. (PMID: 3681847710.3389/fimmu.2022.1072420)
Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006 (9):937–45. (PMID: 1690616610.1038/ni1376)
Togami Y, Matsumoto H, Yoshimura J, et al. Clinical Significance of Interferon Signaling Based on mRNA-microRNA Integration and Plasma Protein Analyses in Critically Ill COVID-19 Patients. Molecular therapy Nucleic acids. 2022.
Fan J, Yang Y, Wang L, et al. Study on the Correlation between Interleukin-27 and CXCL10 in Pulmonary Tuberculosis. J Immunol Res. 2022;2022:2932837. (PMID: 35785034924275210.1155/2022/2932837)
Kelly AM, Leech JM, Doyle SL, et al. Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathog. 2022 18(7). (PMID: 35776778928246210.1371/journal.ppat.1010647)
Aghayev T, Mazitova AM, Fang JR, et al. Interleukin-27 signaling serves as an immunological checkpoint for innate cytotoxic cells to promote hepatocellular carcinoma. Cancer Discov. 2022.
Amsden H, Kourko O, Roth M, et al. Antiviral Activities of Interleukin-27: A Partner for Interferons? Front Immunol. 2022;13. (PMID: 35634328913479010.3389/fimmu.2022.902853)
Detry S, Składanowska K, Vuylsteke M, et al. Revisiting the combinatorial potential of cytokine subunits in the IL-12 family. Biochem Pharmacol. 2019;165:240–8. (PMID: 3088576510.1016/j.bcp.2019.03.026)
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18(12):773–89. (PMID: 3025425110.1038/s41577-018-0066-7)
Caveney NA, Glassman CR, Jude KM, et al. Structure of the IL-27 quaternary receptor signaling complex. Elife. 2022 17:11.
Krumbiegel D, Anthogalidis-Voss C, Markus H, et al. Enhanced expression of IL-27 mRNA in human newborns. Pediatr Allergy Immunol. 2008;19(6):513–6. (PMID: 1816715510.1111/j.1399-3038.2007.00685.x)
Jones LL, Vignali DAA. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunol Res. 2011;51(1):5–14. (PMID: 21553332352914810.1007/s12026-011-8209-y)
Perret D, Guillet C, Elson G, et al. Two different contact sites are recruited by cardiotrophin-like cytokine (CLC) to generate the CLC/CLF and CLC/sCNTFRalpha composite cytokines. J Biol Chem. 2004;279(42):43961–70. (PMID: 1527201910.1074/jbc.M407686200)
Rousseau F, Chevalier S, Guillet C, et al. Ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin share a conserved binding site on the ciliary neurotrophic factor receptor alpha chain. J Biol Chem. 2008;283(44):30341–50. (PMID: 18728012266208610.1074/jbc.M803239200)
Diveu C, McGeachy MJ, Boniface K, et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol. 2009;182(9):5748–56. (PMID: 1938082210.4049/jimmunol.0801162)
Stumhofer JS, Tait ED, Quinn WJ 3rd, et al. A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nat Immunol. 2010 11(12):1119–26. (PMID: 21057510305949810.1038/ni.1957)
Petes C, Mariani MK, Yang Y, et al. Interleukin (IL)-6 Inhibits IL-27- and IL-30-Mediated Inflammatory Responses in Human Monocytes. Front Immunol. 2018;9:256. (PMID: 29497424581845610.3389/fimmu.2018.00256)
Devergne O, Hummel M, Koeppen H, et al. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol. 1996;70(2):1143–53. (PMID: 855157518992310.1128/jvi.70.2.1143-1153.1996)
Hasegawa H, Mizoguchi I, Chiba Y, et al. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family. Front Immunol. 2016;7:479. (PMID: 27867385509512210.3389/fimmu.2016.00479)
Carl JW, Bai X-F. IL27: its roles in the induction and inhibition of inflammation. Int J Clin Exp Pathol. 2008;1(2):117–23. (PMID: 187848082480558)
Rousseau F, Basset L, Froger J, et al. IL-27 structural analysis demonstrates similarities with ciliary neurotrophic factor (CNTF) and leads to the identification of antagonistic variants. Proc Natl Acad Sci U S A. 2010;107(45):19420–5. (PMID: 20974977298415010.1073/pnas.1005793107)
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm. 2017;2017:3958069. (PMID: 28255204530940710.1155/2017/3958069)
Zhu J-F. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol. 2018;10(10). (PMID: 28847903616981510.1101/cshperspect.a030338)
Lin CH, Wu CJ, Cho S, et al. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of T(H)17 cell immunity. Nat Immunol. 2023 24(12):2108–20. (PMID: 379324571105806910.1038/s41590-023-01667-y)
Bréart B, Williams K, Krimm S, et al. IL-27 elicits a cytotoxic CD8(+) T cell program to enforce tumour control. Nature. 2025 639(8055):746–53. (PMID: 3991029810.1038/s41586-024-08510-w)
Yoshimoto T, Okada K, Morishima N, et al. Induction of IgG2a class switching in B cells by IL-27. J Immunol. 2004 173(4):2479–85. (PMID: 1529496210.4049/jimmunol.173.4.2479)
Anderson AC, Sullivan JM, Tan DJ, et al. A T cell extrinsic mechanism by which IL-2 dampens Th17 differentiation. J Autoimmun. 2015;59:38–42. (PMID: 25725581441480610.1016/j.jaut.2015.02.001)
Yao G-H, Qi J-J, Liang J, et al. Mesenchymal stem cell transplantation alleviates experimental Sjögren’s syndrome through IFN-β/IL-27 signaling axis. Theranostics. 2019;9(26):8253–65. (PMID: 31754394685706710.7150/thno.37351)
Qi J-J, Zhang Z-Y, Tang X-J, et al. IL-27 Regulated CD4IL-10 T Cells in Experimental Sjögren Syndrome. Front Immunol. 2020;11:1699. (PMID: 32849596743160310.3389/fimmu.2020.01699)
Ma N, Fang Y, Xu R-N, et al. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol. 2019;107:61–70. (PMID: 3066099110.1016/j.molimm.2019.01.009)
Gollnick H, Barber J, Wilkinson RJ, et al. IL-27 inhibits anti- Mycobacterium tuberculosis innate immune activity of primary human macrophages. Tuberculosis (Edinb). 2023 139. (PMID: 3686320610.1016/j.tube.2023.102326)
Karakhanova S, Bedke T, Enk AH, et al. IL-27 renders DC immunosuppressive by induction of B7–H1. J Leukoc Biol. 2011;89(6):837–45. (PMID: 2134597010.1189/jlb.1209788)
Qian-Mei Y, Ze-Hong S, Guang W, et al. Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res. 2021;69(5):398–414. (PMID: 10.1007/s12026-021-09211-6)
Park Y-J, Ryu H, Choi G, et al. IL-27 confers a protumorigenic activity of regulatory T cells via CD39. Proc Natl Acad Sci U S A. 2019;116(8):3106–11. (PMID: 30718407638667510.1073/pnas.1810254116)
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity. 2019;50(4):851–70. (PMID: 3099550310.1016/j.immuni.2019.03.011)
Jia Y, Swerdloff RS, Lue Y-H, et al. The IL-27 component EBI-3 and its receptor subunit IL-27Rα are essential for the cytoprotective action of humanin on male germ cells†. Biol Reprod. 2021;104(3):717–30. (PMID: 3333092210.1093/biolre/ioaa225)
Abdalla AE, Li Q-M, Xie L-X, et al. Biology of IL-27 and its Role in the Host Immunity against Mycobacterium Tuberculosis [Review]. Int J Biol Sci. 2015;11(2):168–75. (PMID: 25561899427909210.7150/ijbs.10464)
Duan Y-Q, Jia Y-L, Wang T-T, et al. Potent therapeutic target of inflammation, virus and tumor: focus on interleukin-27. Int Immunopharmacol. 2015;26(1):139–46. (PMID: 2581276810.1016/j.intimp.2015.03.016)
Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 2004;172(4):2225–31. (PMID: 1476469010.4049/jimmunol.172.4.2225)
Shinozaki Y, Wang S, Miyazaki Y, et al. Tumor-specific cytotoxic T cell generation and dendritic cell function are differentially regulated by interleukin 27 during development of anti-tumor immunity. Int J Cancer. 2009;124(6):1372–8. (PMID: 1908991710.1002/ijc.24107)
Wang Q-H, Ning H, Peng H, et al. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun. 2017;8(1):867. (PMID: 29021521563682810.1038/s41467-017-00892-y)
Jin Y, Fyfe PK, Gardner S, et al. Structural insights into the assembly and activation of the IL-27 signaling complex. EMBO Rep. 2022O 6;23(10). (PMID: 35920255953576610.15252/embr.202255450)
Müller SI, Friedl A, Aschenbrenner I, et al. A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine. Proc Natl Acad Sci U S A. 2019;116(5):1585–90. (PMID: 30651310635866810.1073/pnas.1816698116)
Wang Q, Li D, Cao G, et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature. 2021 600(7888):314–8. (PMID: 3481966410.1038/s41586-021-04127-5)
Chen Y, Zhu M, Hu J, et al. IL-27 Alleviates Airway Inflammation and Airway Hyperresponsiveness in Asthmatic Mice by Targeting the CD39/ATP Axis of Dendritic Cells. Inflammation. 2024 47(2):807–21. (PMID: 3811741010.1007/s10753-023-01945-9)
Brownlie RJ, Kennedy R, Wilson EB, et al. Cytokine receptor IL27RA is an NF-κB-responsive gene involved in CD38 upregulation in multiple myeloma. Blood Adv. 2023 7(15):3874–90. (PMID: 368675771040520210.1182/bloodadvances.2022009044)
Mei Y, Ran Y, Liu Z, et al. IL-27 Mediates Th1 Cells Infiltration in Fetal Membranes in Preterm Labor. Reprod Sci. 2022 29(6):1764–75. (PMID: 3485938910.1007/s43032-021-00803-z)
Mei Y, Ran Y, Liu Z, et al. The Role of IL-27 in the Systemic Inflammatory Response That Accompanies Preterm Labour. Inflammation. 2022 45(2):876–90. (PMID: 3477318810.1007/s10753-021-01592-y)
Huang D, Ran Y, Liu Z, et al. IL-27 Mediates Pro-Inflammatory Effects via the ERK Signaling Pathway During Preterm Labor. Front Immunol. 2021;12. (PMID: 34691022853180810.3389/fimmu.2021.709229)
Wan X, Zhang Y, Tang H, et al. IL-27 signaling negatively regulates FcɛRI-mediated mast cell activation and allergic response. J Leukoc Biol. 2022S;112(3):411–24. (PMID: 3507568710.1002/JLB.2MA1221-637R)
Clénet ML, Laurent C, Lemaitre F, et al. The IL-27/IL-27R axis is altered in CD4(+) and CD8(+) T lymphocytes from multiple sclerosis patients. Clin Transl Immunology. 2021;10(3). (PMID: 33728050793428410.1002/cti2.1262)
Zhang Y, Gao S, Yao S, et al. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4(+)T cells. iScience. 2023 Aug 18;26(8):107464.
Morrow KN, Liang Z, Xue M, et al. The IL-27 receptor regulates TIGIT on memory CD4 + T cells during sepsis. iScience. 2021;24(2).
Strickland AB, Sun D, Sun P, et al. IL-27 Signaling Promotes Th1 Responses and Is Required to Inhibit Fungal Growth in the Lung during Repeated Exposure to Aspergillus fumigatus. Immunohorizons. 2022 6(1):78–89. (PMID: 3506402910.4049/immunohorizons.2100117)
Harker JA, Dolgoter A, Zuniga EI. Cell-intrinsic IL-27 and gp130 cytokine receptor signaling regulates virus-specific CD4⁺ T cell responses and viral control during chronic infection. Immunity. 2013S 19;39(3):548–59. (PMID: 23993651470105810.1016/j.immuni.2013.08.010)
Składanowska K, Bloch Y, Strand J, et al. Structural basis of activation and antagonism of receptor signaling mediated by interleukin-27. Cell Rep. 2022 41(3). (PMID: 36261006959755110.1016/j.celrep.2022.111490)
Haan C, Heinrich PC, Behrmann I. Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem J. 2002 361(Pt 1):105–11. (PMID: 11742534122228410.1042/bj3610105)
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel). 2020;12(2):326. (PMID: 3202384910.3390/cancers12020326)
Ye J, Wang Y, Wang Z, et al. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front Pharmacol. 2020;11:129. (PMID: 32194399706454910.3389/fphar.2020.00129)
Zhao J-J, Turpin-Nolan S, Febbraio MA. IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases. Cytokine. 2021;144. (PMID: 3396284310.1016/j.cyto.2021.155549)
Ma D-F, Wang Y, Zhou G-F, et al. Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function. Inflammation. 2019;42(3):790–8. (PMID: 3066114310.1007/s10753-019-00959-6)
Ernst M, Jenkins BJ. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 2004;20(1):23–32. (PMID: 1469861610.1016/j.tig.2003.11.003)
Li Y, Feng J, Song S, et al. gp130 Controls Cardiomyocyte Proliferation and Heart Regeneration. Circulation. 2020 142(10):967–82. (PMID: 3260006210.1161/CIRCULATIONAHA.119.044484)
Carbotti G, Nikpoor AR, Vacca P, et al. IL-27 mediates HLA class I up-regulation, which can be inhibited by the IL-6 pathway, in HLA-deficient Small Cell Lung Cancer cells. J Exp Clin Cancer Res. 2017;36(1):140. (PMID: 29020964563732910.1186/s13046-017-0608-z)
Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle. 2022 (1):713–27. (PMID: 3482107610.1002/jcsm.12867)
Li Y, Fan S, Kong L, et al. CD9 exacerbates pathological cardiac hypertrophy through regulating GP130/STAT3 signaling pathway. iScience. 2023 Nov 17;26(11):108070.
Holz K, Prinz M, Brendecke SM, et al. Differing Outcome of Experimental Autoimmune Encephalitis in Macrophage/Neutrophil- and T Cell-Specific gp130-Deficient Mice. Front Immunol. 2018;9:836. (PMID: 29770132594074610.3389/fimmu.2018.00836)
Mohd Shukri ND, Farah Izati A, Wan Ghazali WS, et al. CD3CD4gp130 T Cells Are Associated With Worse Disease Activity in Systemic Lupus Erythematosus Patients. Front Immunol. 2021;12. (PMID: 34149710821337310.3389/fimmu.2021.675250)
Jin W, Zhao Y-Q, Yan W, et al. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediators Inflamm. 2012;2012. (PMID: 22911112340349010.1155/2012/506283)
Gregersen I, Sandanger Ø, Askevold ET, et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS ONE. 2017;12(11). (PMID: 29176764570345710.1371/journal.pone.0188387)
Qiu H-N, Liu B, Liu W-H, et al. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem. 2016;411(1–2):1–10. (PMID: 2638687210.1007/s11010-015-2563-3)
Kiouptsi K, Jäckel S, Pontarollo G, et al. The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. mBio. 2019;10(5):e02298–19.
Ryu H, Lim H, Choi G, et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat Immunol. 2018 19(6):583–93. (PMID: 2971301510.1038/s41590-018-0102-6)
Fu H, Tang Y-Y, Ouyang X-P, et al. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2014;452(4):881–7. (PMID: 2519480710.1016/j.bbrc.2014.08.120)
Koltsova EK, Kim G, Lloyd KM, et al. Interleukin-27 receptor limits atherosclerosis in Ldlr-/- mice. Circ Res. 2012;111(10):1274–85. (PMID: 22927332375099610.1161/CIRCRESAHA.112.277525)
Ma M-C, Wang B-W, Yeh T-P, et al. Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol. 2015;110(3):22. (PMID: 2582090710.1007/s00395-015-0480-y)
Phan W-L, Huang Y-T, Ma M-C. Interleukin-27 Protects Cardiomyocyte-Like H9c2 Cells against Metabolic Syndrome: Role of STAT3 Signaling. Biomed Res Int. 2015;2015. (PMID: 26339633453858010.1155/2015/689614)
Peshkova IO, Fatkhullina AR, Mikulski Z, et al. IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Sci Rep. 2017;7(1):2255. (PMID: 28536468544211710.1038/s41598-017-01828-8)
Hirase T, Hara H, Miyazaki Y, et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol. 2013;305(3):H420–9. (PMID: 2372921110.1152/ajpheart.00198.2013)
Tanaka T, Obana M, Mohri T, et al. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells. Cytokine. 2015;75(2):365–72. (PMID: 2614282310.1016/j.cyto.2015.06.009)
Miura K, Saita E, Suzuki-Sugihara N, et al. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine. 2017;96(43). (PMID: 29068992567182510.1097/MD.0000000000008260)
Al Shahi H, Shimada K, Miyauchi K, et al. Elevated Circulating Levels of Inflammatory Markers in Patients with Acute Coronary Syndrome. Int J Vasc Med. 2015;2015. (PMID: 265046004609512)
Jafarzadeh A, Nemati M, Rezayati MT. Serum levels of interleukin (IL)-27 in patients with ischemic heart disease. Cytokine. 2011;56(2):153–6. (PMID: 2179506310.1016/j.cyto.2011.06.014)
Vargas-Alarcón G, Pérez-Hernández N, Rodríguez-Pérez JM, et al. Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study Cytokine. 2019 114:32–7. (PMID: 30594065)
Posadas-Sánchez R, Pérez-Hernández N, Rodríguez-Pérez JM, et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: the genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget. 2017;8(38):64459–70. (PMID: 28969085561001710.18632/oncotarget.16223)
Fan Q, Nie S, Li S, et al. Analysis of the genetic association between IL27 variants and coronary artery disease in a Chinese Han population. Sci Rep. 2016;6:25782. (PMID: 27174010486594010.1038/srep25782)
Si F, Wu Y, Gao F, et al. Relationship between IL-27 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med. 2017;17(4):451–7. (PMID: 2810881310.1007/s10238-017-0451-8)
Lin Y-Z, Huang Y, Lu Z-D, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS ONE. 2012;7(12). (PMID: 23285065352865710.1371/journal.pone.0052490)
Liu B, Fu Q, Yan Q-N, et al. Value of biochemical marker detection in risk stratification in patients with acute coronary syndrome. Journal of Southern Medical University. 2010;30(05):1015–9. (PMID: 20501382)
Wang Y, Zhou C, Yu T, et al. Correlation between Changes in Serum RBP4, hs-CRP, and IL-27 Levels and Rosuvastatin in the Treatment of Coronary Heart Disease. J Healthc Eng. 2021;2021:8476592. (PMID: 34956579869503710.1155/2021/8476592)
Saita E, Kishimoto Y, Ohmori R, et al. Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography. J Cardiovasc Dev Dis. 2024 Apr 30;11(5).
Grufman H, Yndigegn T, Gonçalves I, et al. Elevated IL-27 in patients with acute coronary syndrome is associated with adverse ventricular remodeling and increased risk of recurrent myocardial infarction and cardiovascular death. Cytokine. 2019 122. (PMID: 2942855910.1016/j.cyto.2017.11.002)
Zhang L, Zhang J-F, Su S-H, et al. Changes in interleukin-27 levels in patients with acute coronary syndrome and their clinical significance. PeerJ. 2019;7. (PMID: 30631648632248010.7717/peerj.5652)
Owaki T, Asakawa M, Fukai F, et al. IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J Immunol. 2006 177(11):7579–87. (PMID: 1711442710.4049/jimmunol.177.11.7579)
Su X, Pan J, Bai F, et al. IL-27 attenuates airway inflammation in a mouse asthma model via the STAT1 and GADD45γ/p38 MAPK pathways. J Transl Med. 2016 14(1):283. (PMID: 27687913504133010.1186/s12967-016-1039-x)
Contributed Indexing: Keywords: Atherosclerosis; Coronary artery disease; IL-27; Inflammation; WSX-1/gp130
Substance Nomenclature: 0 (Inflammasomes)
0 (Interleukins)
0 (Inflammation Mediators)
0 (Anti-Inflammatory Agents)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Interleukin-27)
0 (MYDGF protein, human)
0 (NLRP3 protein, human)
Entry Date(s): Date Created: 20250707 Date Completed: 20251119 Latest Revision: 20251119
Update Code: 20251119
DOI: 10.1007/s12265-025-10656-5
PMID: 40622445
Database: MEDLINE
Description
Abstract:Competing Interests: Declarations. Conflict of interest: The authors declare that they have no conflict of interest. Ethics approval and Consent to Participate: Not applicable.<br />Coronary artery disease (CAD) is increasingly recognized as a chronic inflammatory condition. Interleukin-27 (IL-27), a cytokine from the IL-12 and IL-6 families, plays a dual role in CAD pathogenesis. It exacerbates disease by interacting with IL-1β and activating the NLRP3 inflammasome, promoting inflammation and tissue damage. Conversely, IL-27 can delay disease progression by engaging STAT1/3 signalling, suppressing inflammation, and promoting tissue repair. Future research should focus on elucidating IL-27's specific biological functions, interactions with molecular targets, and clinical implications in CAD. This will enhance understanding of CAD and support the development of improved diagnostic and therapeutic strategies.<br /> (© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
ISSN:1937-5395
DOI:10.1007/s12265-025-10656-5