AI-based routing algorithms improve energy efficiency, latency, and data reliability in wireless sensor networks.
Uloženo v:
| Název: | AI-based routing algorithms improve energy efficiency, latency, and data reliability in wireless sensor networks. |
|---|---|
| Autoři: | Priyadarshi R; Faculty of Engineering and Technology, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India. rahulpriyadarshi@soa.ac.in., Kumar RR; Department of ECE, National Institute of Technology, Patna, Bihar, 800005, India., Ranjan R; School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India., Kumar PV; Department of ECE, Aditya University, Surampalem, 533437, India. |
| Zdroj: | Scientific reports [Sci Rep] 2025 Jul 01; Vol. 15 (1), pp. 22292. Date of Electronic Publication: 2025 Jul 01. |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE |
| Imprint Name(s): | Original Publication: London : Nature Publishing Group, copyright 2011- |
| Abstrakt: | This paper proposes a modular Artificial Intelligence (AI)-based routing framework for Wireless Sensor Networks (WSNs) that integrates reinforcement learning (RL), supervised learning, and swarm intelligence techniques such as genetic algorithms (GA) and particle swarm optimization (PSO). Unlike conventional approaches that rely on static or standalone algorithms, the proposed framework employs a structured decision-making pipeline that dynamically adapts to real-time changes in network topology, traffic, and energy conditions. Each AI module plays a distinct role-RL handles local routing decisions, while GA and PSO are invoked for global optimization under resource constraints. Simulations conducted in MATLAB R2021b validate the framework's effectiveness, demonstrating improvements in packet delivery ratio, end-to-end latency, and energy efficiency when compared to traditional protocols. While this study is based on synthetic evaluations, it outlines the architectural groundwork for future real-world implementation and discusses deployment challenges such as scalability, resource usage, and security. The results highlight the potential of hybrid AI-based routing strategies to enhance the reliability, adaptability, and sustainability of WSNs in dynamic and resource-limited environments. (© 2025. The Author(s).) |
| Competing Interests: | Declarations. Competing interests: The authors declare no competing interests. |
| References: | Gavrilovska, L., Atanasovski, V., Macaluso, I. & Da Silva, L. Learning and reasoning in cognitive radio networks. In IEEE Communications Surveys & Tutorials. Vol. 15. https://doi.org/10.1109/SURV.2013.030713.00113 (2013). Mitola, J. & Maguire, G. Q. Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6. https://doi.org/10.1109/98.788210 (1999). Gowdhaman, V. & Dhanapal, R. Hybrid deep learning-based intrusion detection system for wireless sensor network. Int. J. Veh. Inf. Commun. Syst. 9, 239–255 (2024). Liu, Z. et al. K-coverage estimation for irregular targets in wireless visual sensor networks deployed in complex region of interest. IEEE Sens. J. 25, 18370–18383. https://doi.org/10.1109/JSEN.2025.3558041 (2025). (PMID: 10.1109/JSEN.2025.3558041) Yang, X. S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). https://doi.org/10.1007/978-3-642-12538-6_6 (Springer, 2010). Rashedi, E., Nezamabadi-Pour, H. & Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 179. https://doi.org/10.1016/j.ins.2009.03.004 (2009). Zhang, S., Li, T., Jin, D. & Li, Y. Netdiff: A service-guided hierarchical diffusion model for network flow trace generation. Proc. ACM Netw. 2, 1–21 (2024). Yu, B., Yang, Z. Z. & Yao, B. An improved ant colony optimization for vehicle routing problem. Eur. J. Oper. Res. 196. https://doi.org/10.1016/j.ejor.2008.02.028 (2009). Wang, S. et al. Extendable multiple nodes recurrent tracking framework with rtu++. IEEE Trans. Image Process. 31, 5257–5271. https://doi.org/10.1109/TIP.2022.3192706 (2022). (PMID: 10.1109/TIP.2022.319270635881604) Hu, Q. et al. Varfvv: View-adaptive real-time interactive free-view video streaming with edge computing. IEEE J. Sel. Areas Commun. 1–1. https://doi.org/10.1109/JSAC.2025.3559140 (2025). Koroupi, F., Talebi, S. & Salehinejad, H. Cognitive radio networks spectrum allocation: An ACS perspective. Sci. Iran. 19. https://doi.org/10.1016/j.scient.2011.04.029 (2012). Cao, X., Xiangwei, Z. L., Liu, L. & Yu, C. Energy-efficient spectrum sensing for cognitive radio enabled remote state estimation over wireless channels. IEEE Trans. Wirel. Commun. 14. https://doi.org/10.1109/TWC.2014.2379642 (2015). Letaief, B., Chen, W., Shi, Y., Zhang, J. & Zhang, Y. J. A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57. https://doi.org/10.1109/MCOM.2019.1900271 (2019). Zeng, Y. & Liang, Y. C. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57. https://doi.org/10.1109/TCOMM.2009.0901.060118 (2009). Ma, Y., Li, T., Zhou, Y., Yu, L. & Jin, D. Mitigating energy consumption in heterogeneous mobile networks through data-driven optimization. IEEE Trans. Netw. Serv. Manag. 21, 4369–4382. https://doi.org/10.1109/TNSM.2024.3416947 (2024). (PMID: 10.1109/TNSM.2024.3416947) Zheng, B. et al. Reinforcement learning-based plasma flow control of asymmetric vortices over a slender body at high angles of attack. Phys. Fluids 37 (2025). Dai, M., Sun, G., Yu, H., Wang, S. & Niyato, D. User association and channel allocation in 5G mobile asymmetric multi-band heterogeneous networks. IEEE Trans. Mobile Comput. 24, 3092–3109. https://doi.org/10.1109/TMC.2024.3503632 (2025). (PMID: 10.1109/TMC.2024.3503632) Hu, F., Chen, B. & Zhu, K. Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access 6. https://doi.org/10.1109/ACCESS.2018.2802450 (2018). Song, L., Sun, G., Yu, H. & Niyato, D. ESPD-LP: Edge service pre-deployment based on location prediction in MEC. IEEE Trans. Mobile Comput. 24, 5551–5568. https://doi.org/10.1109/TMC.2025.3533005 (2025). (PMID: 10.1109/TMC.2025.3533005) Qadir, J., Baig, A., Ali, A. & Shafi, Q. Multicasting in cognitive radio networks: Algorithms, techniques and protocols. J. Netw. Comput. Appl. 45. https://doi.org/10.1016/j.jnca.2014.07.024 (2014). Luo, H., Sun, G., Chi, C., Yu, H. & Guizani, M. Convergence of symbiotic communications and blockchain for sustainable and trustworthy 6G wireless networks. IEEE Wirel. Commun. 32, 18–25. https://doi.org/10.1109/MWC.001.2400245 (2025). (PMID: 10.1109/MWC.001.2400245) Bahi, F. Z., Ghennioui, H. & Zouak, M. Spectrum sensing technique of OFDM signal under noise uncertainty based on mean ambiguity function for cognitive radio. Phys. Commun. 33. https://doi.org/10.1016/j.phycom.2018.12.022 (2019). Wang, E., Yang, Y., Wu, J., Liu, W. & Wang, X. An efficient prediction-based user recruitment for mobile crowdsensing. IEEE Trans. Mobile Comput. 17, 16–28. https://doi.org/10.1109/TMC.2017.2702613 (2018). (PMID: 10.1109/TMC.2017.2702613) Zeng, Y., Liang, Y. C., Hoang, A. T. & Zhang, R. A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP J. Adv. Signal Process. 2010, 1. https://doi.org/10.1155/2010/381465 (2010). (PMID: 10.1155/2010/381465) Li, K., Kou, J. & Gong, L. Predicting software quality by optimized BP network based on PSO. J. Comput. 6 (2011). Srivastava, A., Gupta, M. S. & Kaur, G. Energy efficient transmission trends towards future green cognitive radio networks (5G): Progress, taxonomy and open challenges. J. Netw. Comput. Appl. 102 (2020). Priyadarshi, R. & Gupta, B. Coverage area enhancement in wireless sensor network. Microsyst. Technol. 26, 1417–1426. https://doi.org/10.1007/s00542-019-04674-y (2020). (PMID: 10.1007/s00542-019-04674-y) Guimaraes, D. A., Silva, C. & Souza, R. A. Cooperative spectrum sensing using eigenvalue fusion for ofdma and other wideband signals. J. Sens. Actuator Netw. 2. https://doi.org/10.3390/jsan2010001 (2013). Hu, J. et al. Headtrack: Real-time human computer interaction via wireless earphones. IEEE J. Sel. Areas Commun. 42, 990–1002. https://doi.org/10.1109/JSAC.2023.3345381 (2024). (PMID: 10.1109/JSAC.2023.3345381) Zhang, Y. & Wu, L. Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors 11, 4721–4733. https://doi.org/10.3390/s110504721 (2011). (PMID: 10.3390/s110504721221638723231381) Wang, P. et al. Server-initiated federated unlearning to eliminate impacts of low-quality data. IEEE Trans. Serv. Comput. 17, 1196–1211. https://doi.org/10.1109/TSC.2024.3355188 (2024). (PMID: 10.1109/TSC.2024.3355188) Zhou, F. et al. State of the art, taxonomy, and open issues on cognitive radio networks with NOMA. IEEE Wirel. Commun. 25, 44–51. https://doi.org/10.1109/MWC.2018.1700113 (2018). (PMID: 10.1109/MWC.2018.1700113) Zou, X. et al. From hyper-dimensional structures to linear structures: Maintaining deduplicated data s locality. ACM Trans. Storage 18. https://doi.org/10.1145/3507921 (2022). Zhao, Z., Peng, Z., Zheng, S. & Shang, J. Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Trans. Wirel. Commun. 8, 4421–4425. https://doi.org/10.1109/TWC.2009.080939 (2009). (PMID: 10.1109/TWC.2009.080939) Gaddam, A., Mukhopadhyay, S. C. & Gupta, G. S. Elder care based on cognitive sensor network. IEEE Sens. J. 11, 574–581. https://doi.org/10.1109/JSEN.2010.2051425 (2011). (PMID: 10.1109/JSEN.2010.2051425) Zeng, F., Li, C. & Tian, Z. Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE J. Sel. Top. Signal Process. 5, 37–48. https://doi.org/10.1109/JSTSP.2010.2055037 (2011). (PMID: 10.1109/JSTSP.2010.2055037) Gardner, W. A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process. Mag. 8, 14–36. https://doi.org/10.1109/79.81007 (1991). (PMID: 10.1109/79.81007) Xia, W. et al. The design of fast and lightweight resemblance detection for efficient post-deduplication delta compression. ACM Trans. Storage 19. https://doi.org/10.1145/3584663 (2023). Tsiropoulos, G. I., Yadav, A., Zeng, M. & Dobre, O. A. Cooperation in 5g hetnets: Advanced spectrum access and d2d assisted communications. IEEE Wirel. Commun. 24, 94–101. https://doi.org/10.1109/MWC.2017.1700082 (2017). (PMID: 10.1109/MWC.2017.1700082) Katidiotis, A., Tsagkaris, K. & Demestichas, P. Performance evaluation of artificial neural network-based learning schemes for cognitive radio systems. Comput. Electr. Eng. 36, 518–527. https://doi.org/10.1016/j.compeleceng.2009.12.005 (2010). (PMID: 10.1016/j.compeleceng.2009.12.005) Priyadarshi, R. & Gupta, B. 2-D coverage optimization in obstacle-based FOI in WSN using modified PSO. J. Supercomput. 79, 4847–4869. https://doi.org/10.1007/s11227-022-04832-6 (2023). (PMID: 10.1007/s11227-022-04832-6) Zhang, H. et al. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Commun. Mag. 55, 138–145. https://doi.org/10.1109/MCOM.2017.1600940 (2017). (PMID: 10.1109/MCOM.2017.1600940) El-Khamy, S. E., Abd-el Malek, M. B. & Kamel, S. H. Compressive spectrum sensing using complementary matrices for cooperative cognitive radio networks under a non-reconstruction framework. Phys. Commun. https://doi.org/10.1016/j.phycom.2019.100951 (2020). (PMID: 10.1016/j.phycom.2019.100951) Al-Hmood, H. & Al-Raweshidy, H. S. On the effective rate and energy detection based spectrum sensing over α-η-κ-μ fading channels. IEEE Trans. Veh. Technol. 69, 6763–6772. https://doi.org/10.1109/TVT.2020.2998895 (2020). (PMID: 10.1109/TVT.2020.2998895) Yu, J., Xi, L. & Wang, S. An improved particle swarm optimization for evolving feedforward artificial neural networks. Neural Process. Lett. 26, 217–231. https://doi.org/10.1007/s11063-007-9053-x (2007). (PMID: 10.1007/s11063-007-9053-x) Zhou, Z. et al. Resource-saving and high-robustness image sensing based on binary optical computing. Laser Photon. Rev. 19, 2400936. https://doi.org/10.1002/lpor.202400936 (2025). (PMID: 10.1002/lpor.202400936) Maleki, S., Pandharipande, A. & Leus, G. Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sens. J. 11. https://doi.org/10.1109/JSEN.2010.2051327 (2011). Xu, F., Yang, H.-C. & Alouini, M.-S. Energy consumption minimization for data collection from wirelessly-powered IOT sensors: Session-specific optimal design with DRL. IEEE Sens. J. 22, 19886–19896. https://doi.org/10.1109/JSEN.2022.3205017 (2022). (PMID: 10.1109/JSEN.2022.3205017) Li, X. L. & Qian, J. X. Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques. J. Circuits Syst. 1 (2003). Jin, S., Wang, X. & Meng, Q. Spatial memory-augmented visual navigation based on hierarchical deep reinforcement learning in unknown environments. Knowl.-Based Syst. 285, 111358 (2024). (PMID: 10.1016/j.knosys.2023.111358) Atapattu, S., Tellambura, C. & Jiang, H. Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 10. https://doi.org/10.1109/TWC.2011.012411.100611 (2011). Hu, J. et al. Wishield: Privacy against WI-FI human tracking. IEEE J. Sel. Areas Commun. 42, 2970–2984. https://doi.org/10.1109/JSAC.2024.3414597 (2024). (PMID: 10.1109/JSAC.2024.3414597) Chen, J., Wang, J., Wang, J. & Bai, L. Joint fairness and efficiency optimization for CSMA/CA-based multi-user MIMO UAV ad hoc networks. IEEE J. Sel. Top. Signal Process. 18, 1311–1323. https://doi.org/10.1109/JSTSP.2024.3435348 (2024). (PMID: 10.1109/JSTSP.2024.3435348) Lu, J. & Osorio, C. A probabilistic traffic-theoretic network loading model suitable for large-scale network analysis. Transport. Sci. 52, 1509–1530. https://doi.org/10.1287/trsc.2017.0804 (2018). (PMID: 10.1287/trsc.2017.0804) Thomas, R. W., Friend, D. H., DaSilva, L. A. & MacKenzie, A. B. Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun. Mag. 44. https://doi.org/10.1109/MCOM.2006.273099 (2006). Yang, X. S. Engineering Optimization: An Introduction with Metaheuristic Applications (Wiley, 2010). (PMID: 10.1002/9780470640425) Hu, J. et al. Combining IMU with acoustics for head motion tracking leveraging wireless earphone. IEEE Trans. Mobile Comput. 23, 6835–6847. https://doi.org/10.1109/TMC.2023.3325826 (2024). (PMID: 10.1109/TMC.2023.3325826) Eappen, G. & Shankar, T. Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Phys. Commun. 10 (2020). Huang, S., Sun, C. & Pompili, D. Meta-ETI: Meta-reinforcement learning with explicit task inference for UAV-IOT coverage. IEEE Internet Things J. 1–1. https://doi.org/10.1109/JIOT.2025.3553808 (2025). Wellens, M. & Mhnen, P. Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mobile Netw. Appl. 15. https://doi.org/10.1007/s11036-009-0199-9 (2010). Zhao, H. et al. Supervised kernel principal component analysis-polynomial chaos-kriging for high-dimensional surrogate modelling and optimization. Knowl.-Based Syst. 305, 112617 (2024). (PMID: 10.1016/j.knosys.2024.112617) Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. Network Flows: Theory, Algorithms, and Applications (Prentice-Hall, 1993). Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput. Netw. 50. https://doi.org/10.1016/j.comnet.2006.05.001 (2006). Dong, X. & Yu, M. Time-varying effects of macro shocks on cross-border capital flows in China’s bond market. Int. Rev. Econ. Finance 96, 103720 (2024). (PMID: 10.1016/j.iref.2024.103720) Yang, Z., Cheng, G., Liu, W., Yuan, W. & Cheng, W. Local coordination based routing and spectrum assignment in multi-hop cognitive radio networks. Mobile Netw. Appl. 13. https://doi.org/10.1007/s11036-008-0025-9 (2008). Thomas, R. W., Friend, D. H., Da Silva, L. A. & MacKenzie, A. B. Cognitive Networks (Springer, 2007). Wellens, M., Riihij rvi, J. & Mhnen, P. Empirical time and frequency domain models of spectrum use. Phys. Commun. 2. https://doi.org/10.1016/j.phycom.2009.03.001 (2009). Xu, Y. et al. Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Commun. Surv. Tutorials 15. https://doi.org/10.1109/SURV.2013.030713.00189 (2013). Cacciapuoti, A. S., Caleffi, M. & Paura, L. Reactive routing for mobile cognitive radio ad hoc networks. Ad Hoc Netw. 10. https://doi.org/10.1016/j.adhoc.2011.04.004 (2012). Raghunathan, V. & Kumar, P. Wardrop routing in wireless networks. IEEE Trans. Mobile Comput. 8. https://doi.org/10.1109/TMC.2008.164 (2009). Wang, X., Ji, Y., Zhou, H. & Li, J. A nonmonetary QOS-aware auction framework toward secure communications for cognitive radio networks. IEEE Trans. Veh. Technol. 65. https://doi.org/10.1109/TVT.2015.2463686 (2015). Padmadas, M., Krishnan, N. & Nayaki, V. N. Analysis of attacks in cognitive radio NWS. Int. J. Adv. Res. Comput. Commun. Eng. 4 (2015). Zhang, Z.-W., Liu, Z.-G., Ning, L.-B., Tian, H.-P. & Wang, B.-l. Belief-based fuzzy and imprecise clustering for arbitrary data distributions. IEEE Trans. Fuzzy Syst. 1–13. https://doi.org/10.1109/TFUZZ.2025.3576588 (2025). Vimal, S. et al. Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks. Neural Comput. Appl. 32. https://doi.org/10.1007/s00521-018-3788-3 (2020). Wang, Z. et al. Acr-net: Learning high-accuracy optical flow via adaptive-aware correlation recurrent network. IEEE Trans. Circuits Syst. Video Technol. 34, 9064–9077. https://doi.org/10.1109/TCSVT.2024.3395636 (2024). (PMID: 10.1109/TCSVT.2024.3395636) Xu, Y., Ding, L., He, P., Lu, Z. & Zhang, J. Meta: A memory-efficient tri-stage polynomial multiplication accelerator using 2d coupled-bfus. IEEE Trans. Circuits Syst. I Regul. Pap. 72, 647–660. https://doi.org/10.1109/TCSI.2024.3461736 (2025). (PMID: 10.1109/TCSI.2024.3461736) Liu, G. et al. Annual multi-objective optimization model and strategy for scheduling cascade reservoirs on the yellow river mainstream. J. Hydrol. 133306 (2025). Azmat, F., Chen, Y. & Stocks, N. Bio-inspired collaborative spectrum sensing and allocation for cognitive radios. IET Commun. 9. https://doi.org/10.1049/iet-com.2014.0769 (2015). Elghamrawy, S. M. Security in cognitive radio network: Defense against primary user emulation attacks using genetic artificial bee colony (gabc) algorithm. Future Gen. Comput. Syst. 109. https://doi.org/10.1016/j.future.2018.08.022 (2020). Ji, L. et al. Data-based optimal consensus control for multiagent systems with time delays: Using prioritized experience replay. IEEE Trans. Syst. Man Cybern. Syst. 54, 3244–3256. https://doi.org/10.1109/TSMC.2024.3358293 (2024). (PMID: 10.1109/TSMC.2024.3358293) Huang, C. et al. Flow2gnn: Flexible two-way flow message passing for enhancing gnns beyond homophily. IEEE Trans. Cybern. 54, 6607–6618. https://doi.org/10.1109/TCYB.2024.3412149 (2024). (PMID: 10.1109/TCYB.2024.341214938985552) Priyadarshi, R. Exploring machine learning solutions for overcoming challenges in iot-based wireless sensor network routing: A comprehensive review. Wirel. Netw. https://doi.org/10.1007/s11276-024-03697-2 (2024). (PMID: 10.1007/s11276-024-03697-2) Riahi Manesh, M. & Kaabouch, N. Analysis of attacks and vulnerabilities of automatic dependent surveillance-broadcast. Int. J. Crit. Infrastruct. Protect. 19. https://doi.org/10.1016/j.ijcip.2017.10.002 (2017). Nguyen, V., Duong, T., Shin, O., Nallanathan, A. & Karagiannidis, G. Enhancing phy security of cooperative cognitive radio multicast communications. IEEE Trans. Cognit. Commun. Netw. 3. https://doi.org/10.1109/TCCN.2017.2748132 (2017). Zhang, Y. et al. Integrated sensing, communication, and computation in sagin: Joint beamforming and resource allocation. IEEE Trans. Cognit. Commun. Netw. 1–1. https://doi.org/10.1109/TCCN.2025.3577377 (2025). Yuan, Z., Han, Z. S., Li, H. & Song, J. B. Routing-toward-primary-user attack and belief propagation-based defense in cognitive radio NWS. IEEE Trans. Mobile Comput. 12. https://doi.org/10.1109/TMC.2012.137 (2013). Wang, B. & Liu, K. J. R. Advances in cognitive radio NWS: A survey. IEEE J. Sel. Top. Signal Process. 5. https://doi.org/10.1109/JSTSP.2010.2093210 (2011). Lei, H. et al. On secure underlay MIMO CRN with energy harvesting and transmit antenna selection. IEEE Trans. Green Commun. Netw. 1. https://doi.org/10.1109/TGCN.2017.2684827 (2017). Sajid, A. et al. Securing cognitive radio networks using blockchains. Future Gener. Comput. Syst. 108. https://doi.org/10.1016/j.future.2020.03.020 (2020). Khasawneh, M. & Agarwal, A. A secure and efficient authentication mechanism applied to cognitive radio networks. IEEE Access 5. https://doi.org/10.1109/ACCESS.2017.2723322 (2017). Mitola, J. & Maguire, G. Q. Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6. https://doi.org/10.1109/98.788210 (1999). Kim, M. & Ning, P. SECA: A framework for secure channel assignment in wireless mesh NWS. Comput. Commun. 34. https://doi.org/10.1016/j.comcom.2010.05.008 (2011). Kundu, C., Ghose, S. & Bose, R. Secrecy outage of dual-hop regenerative multi-relay system with relay selection. IEEE Trans. Wirel. Commun. 14. https://doi.org/10.1109/TWC.2015.2423290 (2015). Zou, C. & Chigan, C. Dynamic spectrum access-based cryptosystem for cognitive radio networks. Secur. Commun. Netw. 9. https://doi.org/10.1002/sec.1595 (2016). Zou, Y., Zhu, J., Yang, L., Liang, Y. C. & Yao, Y. D. Securing physical-layer communications for cognitive radio NWS. IEEE Commun. Mag. 53. https://doi.org/10.1109/MCOM.2015.7263345 (2015). Raisinghani, V. T. Cross-layer design optimizations in wireless protocol stacks. Comput. Commun. 27. https://doi.org/10.1016/j.comcom.2003.10.011 (2004). Mouaatamid, O., Lahmer, M. & Belkasmi, M. Internet of things security: Layered classification of attacks and possible countermeasures. Electron. J. Inf. Technol. 9 (2016). Rizvi, S., Showan, N. & Mitchell, J. Analyzing the integration of cognitive radio and cloud computing for secure nwing. Proc. Comput. Sci. 61. https://doi.org/10.1016/j.procs.2015.09.195 (2015). Zhang, Y. et al. Learning self-growth maps for fast and accurate imbalanced streaming data clustering. IEEE Trans. Neural Netw. Learn. Syst. 1–13. https://doi.org/10.1109/TNNLS.2025.3563769 (2025). Zhao, X. et al. Target-driven visual navigation by using causal intervention. IEEE Trans. Intell. Veh. 9, 1294–1304. https://doi.org/10.1109/TIV.2023.3288810 (2024). (PMID: 10.1109/TIV.2023.3288810) Vasilakos, A. V. & Papadimitriou, G. I. A new approach to the design of reinforcement schemes for learning automata: stochastic estimator learning algorithm. Neurocomputing 7. https://doi.org/10.1016/0925-2312(94)00027-P (1995). Wang, T. et al. Tasta: Text-assisted spatial and temporal attention network for video question answering. Adv. Intell. Syst. 5, 2200131 (2023). (PMID: 10.1002/aisy.202200131) Cadger, F., Curran, K., Santos, J. & Moffett, S. A survey of geographical routing in wireless ad-hoc networks. IEEE Commun. Surv. Tutor 15. https://doi.org/10.1109/SURV.2012.062612.00109 (2013). Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x (1948). Srinivas, L. R., Babu, B. M. & Ram, S. T. Dvr-based power quality enhancement using adaptive particle swarm optimisation technique. Int. J. Bio-Inspir. Comput. 18, 92–104. https://doi.org/10.1504/IJBIC.2021.118084 (2021). (PMID: 10.1504/IJBIC.2021.118084) Yassine, S. & Najib, N. Routing approaches in named data network: A survey and emerging research challenges. Int. J. Comput. Appl. 46, 32–45. https://doi.org/10.1080/1206212X.2023.2279811 (2024). |
| Entry Date(s): | Date Created: 20250702 Latest Revision: 20250706 |
| Update Code: | 20250707 |
| PubMed Central ID: | PMC12216685 |
| DOI: | 10.1038/s41598-025-08677-w |
| PMID: | 40594790 |
| Databáze: | MEDLINE |
| Abstrakt: | This paper proposes a modular Artificial Intelligence (AI)-based routing framework for Wireless Sensor Networks (WSNs) that integrates reinforcement learning (RL), supervised learning, and swarm intelligence techniques such as genetic algorithms (GA) and particle swarm optimization (PSO). Unlike conventional approaches that rely on static or standalone algorithms, the proposed framework employs a structured decision-making pipeline that dynamically adapts to real-time changes in network topology, traffic, and energy conditions. Each AI module plays a distinct role-RL handles local routing decisions, while GA and PSO are invoked for global optimization under resource constraints. Simulations conducted in MATLAB R2021b validate the framework's effectiveness, demonstrating improvements in packet delivery ratio, end-to-end latency, and energy efficiency when compared to traditional protocols. While this study is based on synthetic evaluations, it outlines the architectural groundwork for future real-world implementation and discusses deployment challenges such as scalability, resource usage, and security. The results highlight the potential of hybrid AI-based routing strategies to enhance the reliability, adaptability, and sustainability of WSNs in dynamic and resource-limited environments.<br /> (© 2025. The Author(s).) |
|---|---|
| ISSN: | 2045-2322 |
| DOI: | 10.1038/s41598-025-08677-w |
Full Text Finder
Nájsť tento článok vo Web of Science