Predictive models for sex Estimation based on alveolar measurements in a contemporary Italian sample.

Gespeichert in:
Bibliographische Detailangaben
Titel: Predictive models for sex Estimation based on alveolar measurements in a contemporary Italian sample.
Autoren: Tanga C; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain. carmentanga@correo.ugr.es., Viciano J; Independent Researcher, Turin, Italy.
Quelle: International journal of legal medicine [Int J Legal Med] 2025 Nov; Vol. 139 (6), pp. 2965-2980. Date of Electronic Publication: 2025 Jul 01.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Springer International Country of Publication: Germany NLM ID: 9101456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1437-1596 (Electronic) Linking ISSN: 09379827 NLM ISO Abbreviation: Int J Legal Med Subsets: MEDLINE
Imprint Name(s): Original Publication: Heidelberg, FRG : Springer International, c1990-
MeSH-Schlagworte: Alveolar Process*/anatomy & histology , Sex Determination by Skeleton*/methods, Humans ; Male ; Female ; Italy ; Adult ; Logistic Models ; Young Adult ; Middle Aged ; Forensic Anthropology ; Reproducibility of Results ; Aged ; Adolescent
Abstract: Teeth play a significant role in reconstructive identification, aiding in the estimation of an individual's biological profile, such as population affinity, sex, and age at death. However, when teeth are lost postmortem-a common occurrence in forensic contexts-alternative methods are required. This study aimed to develop predictive models for sex estimation using alveolar measurements and to evaluate their reliability with a validation sample. Mesiodistal and buccolingual alveolar diameters from both arches were measured in 127 adults (64 males, 63 females) from the Certosa Cemetery osteological collection in Bologna. Binary logistic regression models were developed using a training subsample and tested on a hold-out subsample. The results indicated that the canine alveoli in both arches exhibited the highest sexual dimorphism, followed by those of the central incisor, first premolar, lateral incisor, and second premolar. In the training subsample, univariate predictive models achieved sex classification accuracy ranging from 57.3 to 83.9%, while multivariate models ranged from 68.0 to 91.3%. In the hold-out subsample of 19 individuals, sex was accurately estimated in 89.5% of cases, with a match rate of 63.2% compared with known biological sex. This study highlights the potential of alveolar measurements as a reliable alternative in forensic anthropology, offering a viable method for sex estimation when teeth are unavailable for measurement.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Competing Interests: Declarations. Ethical approval: The study was conducted in accordance with the Police Mortuary Rules (DPR 09.10.1990 n° 285, art. 43). Research involving human participant and/or animals: N/A. Informed consent: N/A. Conflict of interest: The authors declare no competing interests.
References: Valenzuela A, Martin-de Las Heras S, Marques T et al (2000) The application of dental methods of identification to human burn victims in a mass disaster. Int J Legal Med 113:236–239. https://doi.org/10.1007/s004149900099. (PMID: 10.1007/s00414990009910929240)
Martínez-Chicón J, Márquez-Ruiz AB, González-Herrera L et al (2023) Dental pattern diversity in a military population and its usefulness for assessing the degree of certainty in dental identification. Forensic Sci Int 345:111609. https://doi.org/10.1016/j.forsciint.2023.111609. (PMID: 10.1016/j.forsciint.2023.11160936857989)
Modesti LDM, Vieira GM, Galvão MF, De Amorim RFB (2014) Human identification by oral prosthesis analysis with probability rates higher than DNA analysis. J Forensic Sci 59:825–829. https://doi.org/10.1111/1556-4029.12404. (PMID: 10.1111/1556-4029.1240424749854)
Shiroma CY (2014) The analysis of a world war I U.S. Service member’s dental remains recovered in France. J Forensic Sci 59:1654–1657. https://doi.org/10.1111/1556-4029.12557. (PMID: 10.1111/1556-4029.1255725060333)
Richmond R, Pretty IA (2010) Identification of the edentulous individual: an investigation into the accuracy of radiographic identifications**. J Forensic Sci 55:984–987. https://doi.org/10.1111/j.1556-4029.2010.01401.x. (PMID: 10.1111/j.1556-4029.2010.01401.x20412366)
Ahlqvist J (2016) The use of intraoral radiographs for identification of edentulous patients rehabilitated with implants. J Forensic Odontostomatol 34:1–9. (PMID: 273506975734824)
Lundberg E, Mihajlovic N, Sjöström M, Ahlqvist J (2019) The use of panoramic images for identification of edentulous persons. J Forensic Odontostomatol 37:18–24. (PMID: 315895926981351)
Alwohaibi RN, Almaimoni RA, Alshrefy AJ et al (2023) Dental implants and forensic identification: A systematic review. J Forensic Leg Med 96:102508. https://doi.org/10.1016/j.jflm.2023.102508. (PMID: 10.1016/j.jflm.2023.10250836948050)
Silva RF, Viandelli Mundim M, Picoli F, Franco A (2015) Dental identification of a mummified body using dental cast and prosthesis. J Forensic Investig 3:3.
Nuzzolese E (2023) Partial and full dentures in the human identification process. Minerva Forensic Med 143:44–49. https://doi.org/10.23736/s2784-8922.23.01846-0. (PMID: 10.23736/s2784-8922.23.01846-0)
Edgar HJH (2013) Estimation of ancestry using dental morphological characteristics. J Forensic Sci 58(Suppl 1):8. https://doi.org/10.1111/j.1556-4029.2012.02295.x. (PMID: 10.1111/j.1556-4029.2012.02295.x)
Pilloud MA, Hefner JT, Hanihara T, Hayashi A (2014) The use of tooth crown measurements in the assessment of ancestry. J Forensic Sci 59:1493–1501. https://doi.org/10.1111/1556-4029.12540. (PMID: 10.1111/1556-4029.1254025060236)
Marado LM, Silva AM (2017) Estimation of ancestry for an undocumented mandibular sample using dental morphology. Anthropol Anz 74:229–239. https://doi.org/10.1127/anthranz/2017/0690. (PMID: 10.1127/anthranz/2017/069028555244)
Adams D, Pilloud M (2019) Sex Estimation from dental crown and cervical metrics in a contemporary Japanese sample. Forensic Anthropol 2:1–11. https://doi.org/10.5744/fa.2019.1008. (PMID: 10.5744/fa.2019.1008)
Luna L (2019) Canine sex Estimation and sexual dimorphism in the collection of identified skeletons of the university of coimbra, with an application in a Roman cemetery from faro, Portugal. Int J Osteoarchaeol 29:260–272. https://doi.org/10.1002/oa.2734. (PMID: 10.1002/oa.2734)
Tanga C, López-Lázaro S, Soto-Álvarez C, Viciano J (2024) Reliability of predictive models based on the mesiodistal and buccolingual diameters of permanent canine teeth for sex Estimation in forensic contexts: A systematic review and meta-analysis. Forensic Sci Int 361:112143. https://doi.org/10.1016/j.forsciint.2024.112143. (PMID: 10.1016/j.forsciint.2024.11214339024801)
Adserias-Garriga J (2023) Age-at-Death Estimation by dental means as a part of the skeletal analysis. Forensic Sci 3:357–367. https://doi.org/10.3390/forensicsci3020027. (PMID: 10.3390/forensicsci3020027)
Garizoain G, Parra RC, Aranda C et al (2023) Root dentin translucency and age at death Estimation in adults using single rooted teeth: update of the forensic international dental database. Forensic Sci Int 343:111564. https://doi.org/10.1016/j.forsciint.2023.111564. (PMID: 10.1016/j.forsciint.2023.11156436669240)
Oliveira RN, Melalli RFH, Autunes JLF (2000) Postmortem tooth Loos in human identification process. J Forensic Odontostomatol 18:32–36. (PMID: 11324268)
Cirillo L, Bartelink E (2022) Gaps in information: what missing teeth mean in bioarchaeology. Dent Anthropol 35:21–31.
Ðurić M, Rakocevic Z, Tuller H (2004) Factors affecting postmortem tooth loss. J Forensic Sci 49:1–6.
Nayak A, Tamgadge S (2022) Alveolar bone - as a valuable evidence in forensic investigations - A review. Acad J Anthropol Stud 5:9–14.
Smith B (1992) Reconstruction of root morphology in skeletonized remains with postmortem dental loss. J Forensic Sci 37:176–184. https://doi.org/10.1520/jfs13225j. (PMID: 10.1520/jfs13225j1545198)
Law C, Michael Bowers C (1996) Radiographic reconstruction of root morphology in skeletonized remains: A case study. J Forensic Sci 41:514–517. https://doi.org/10.1520/jfs13947j. (PMID: 10.1520/jfs13947j8656196)
Capeletti L, Franco A, Reges R, Silva R (2017) Technical note: intra-alveolar morphology assessed in empty dental sockets of teeth missing post-mortem. Forensic Sci Int 277:161–165. https://doi.org/10.1016/j.forsciint.2017.06.006. (PMID: 10.1016/j.forsciint.2017.06.00628648763)
Jani G, Johnson A (2018) Tooth reconstruction in forensic situations through dental materials: an anatomical Art. J Forensic Dent Sci 10:137–142. https://doi.org/10.4103/jfo.jfds_92_18. (PMID: 10.4103/jfo.jfds_92_18311430626528538)
Johnson A, Jani G, Pandey A, Patel N (2019) Digital tooth reconstruction: an innovative approach in forensic odontology. J Forensic Odontostomatol 37:12–20. (PMID: 318941337442960)
Fujimoto H, Kimura-Kataoka K, Kanayama H et al (2023) Implementation of a personal identification system using alveolar bone images. Forensic Sci Int 343:111548. https://doi.org/10.1016/j.forsciint.2022.111548. (PMID: 10.1016/j.forsciint.2022.11154836630769)
Nelson SJ (2015) Wheeler’s dental anatomy, physiology, and occlusion: 75th anniversary; evolve study resources free with new textbook purchase, 10 edn. Elsevier, Saunders.
Tanga C, Viciano J (2025) Alveolar measurements in dental anthropology: an alternative metric technique in cases of postmortem missing teeth. Forensic Sci 5:1–16. https://doi.org/10.3390/forensicsci5010004. (PMID: 10.3390/forensicsci5010004)
Hassett B (2011) Technical note: estimating sex using cervical canine odontometrics: a test using a known sex sample. Am J Phys Anthropol 146:486–489. https://doi.org/10.1002/ajpa.21584. (PMID: 10.1002/ajpa.2158421953490)
Jackson V (2019) Making the Invisible Visible. Test of an osteological population-specific non-adult sexing approach using permanent odontometrics on a post-medieval Dutch skeletal collection. Tesis de Master, Universidad de Leiden.
Viciano J, López-Lázaro S, Alemán I (2013) Sex Estimation based on deciduous and permanent dentition in a contemporary Spanish population. Am J Phys Anthropol 152:31–43. https://doi.org/10.1002/ajpa.22324. (PMID: 10.1002/ajpa.2232423907722)
Viciano J, Tanga C, D’Anastasio R et al (2021) Sex Estimation by odontometrics of nonadult human remains from a contemporary Italian sample. Am J Phys Anthropol 175:59–80. https://doi.org/10.1002/ajpa.24132. (PMID: 10.1002/ajpa.2413232869297)
Belcastro MG, Bonfiglioli B, Pedrosi ME et al (2017) The history and composition of the identified human skeletal collection of the certosa cemetery (Bologna, italy, 19th–20th century). Int J Osteoarchaeol 27:912–925. https://doi.org/10.1002/oa.2605. (PMID: 10.1002/oa.2605)
Kerr N (1988) A method of assessing periodontal status in archaeologically derived skeletal material. J Paleopathol 2:67–78.
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012. (PMID: 10.1016/j.jcm.2016.02.012273305204913118)
Garn S, Lewis A, Swindler D, Kerewsky R (1967) Genetic control of sexual dimorphism in tooth size. J Dent Res 46:963–972. (PMID: 10.1177/002203456704600558015234039)
Albanese J (2003) A metric method for sex determination using the hipbone and the femur. J Forensic Sci 48:1–11. https://doi.org/10.1520/JFS2001378. (PMID: 10.1520/JFS2001378)
Pohar M, Blas M, Turk S (2004) Comparison of logistic regression and linear discriminant analysis: a simulation study. Metodološki Zv 1:143–161.
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159. https://doi.org/10.2307/2529310. (PMID: 10.2307/2529310843571)
IBM Corp Released (2017) IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp.
İşcan MY, Kedici PS (2003) Sexual variation in bucco-lingual dimensions in Turkish dentition. Forensic Sci Int 137:160–164. https://doi.org/10.1016/S0379-0738(03)00349-9. (PMID: 10.1016/S0379-0738(03)00349-914609652)
Ateş M, Karaman F, Işcan MY, Erdem TL (2006) Sexual differences in Turkish dentition. Leg Med 8:288–292. https://doi.org/10.1016/j.legalmed.2006.06.003. (PMID: 10.1016/j.legalmed.2006.06.003)
Cardoso H (2008) Sample-specific (universal) metric approaches for determining the sex of immature human skeletal remains using permanent tooth dimensions. J Archaeol Sci 35:158–168. https://doi.org/10.1016/j.jas.2007.02.013. (PMID: 10.1016/j.jas.2007.02.013)
Zorba E, Moraitis K, Manolis S (2011) Sexual dimorphism in permanent teeth of modern Greeks. Forensic Sci Int 210:74–81. https://doi.org/10.1016/j.forsciint.2011.02.001. (PMID: 10.1016/j.forsciint.2011.02.00121371836)
Angadi PV, Hemani SR, Prabhu RS, Acharya AB (2013) Analyses of odontometric sexual dimorphism and sex assessment accuracy on a large sample. J Forensic Leg Med 20:673–677. https://doi.org/10.1016/j.jflm.2013.03.040. (PMID: 10.1016/j.jflm.2013.03.04023910859)
Bañuls I, Catalá MY, Plasencia E (2014) Estimación Del Sexo a partir Del análisis odontométrico de Los Caninos permanentes. Rev Esp Antropol Física 35:1–10.
Filipovic G, Kanjevac T, Cetenovic B et al (2016) Sexual dimorphism in the dimensions of teeth in Serbian population. Coll Antropol 40:23–28. (PMID: 27301233)
Peckmann TR, Logar C, Garrido-Varas CE et al (2016) Sex determination using the mesio-distal dimension of permanent maxillary incisors and canines in a modern Chilean population. Sci Justice 56:84–89. https://doi.org/10.1016/j.scijus.2015.10.002. (PMID: 10.1016/j.scijus.2015.10.00226976465)
Dumančić J, Scott G, Savić Pavičin I et al (2023) Canine crown sexual dimorphism in a sample of the modern Croatian population. Dent J 11:175. https://doi.org/10.3390/dj11070175. (PMID: 10.3390/dj11070175)
Acharya A, Mainali S (2007) Univariate sex dimorphism in the Nepalese dentition and the use of discriminant functions in gender assessment. Forensic Sci Int 173:47–56. https://doi.org/10.1016/j.forsciint.2007.01.024. (PMID: 10.1016/j.forsciint.2007.01.02417320321)
Condon M, Bready M, Quinn F et al (2011) Maxillary anterior tooth dimensions and proportions in an Irish young adult population. J Oral Rehabil 38:501–508. https://doi.org/10.1111/j.1365-2842.2010.02181.x. (PMID: 10.1111/j.1365-2842.2010.02181.x21133984)
Staka G, Asllani-Hoxha F, Bimbashi V (2016) Sexual dimorphism in permanent maxillary central incisor in kosovo: Albanian population. Int J Morphol 34:1176–1180. https://doi.org/10.4067/s0717-95022016000300059. (PMID: 10.4067/s0717-95022016000300059)
Shaweesh AI (2017) Mesiodistal and faciolingual diameters of the permanent teeth in a Jordanian population. Arch Oral Biol 73:253–258. https://doi.org/10.1016/j.archoralbio.2016.10.026. (PMID: 10.1016/j.archoralbio.2016.10.02627810383)
Abaid S, Zafar S, Kruger E, Tennant M (2021) Mesiodistal dimensions and sexual dimorphism of teeth of contemporary Western Australian adolescents. J Oral Sci 63:247–251. https://doi.org/10.2334/josnusd.20-0596. (PMID: 10.2334/josnusd.20-059634011827)
Prabhu S, Acharya AB (2009) Odontometric sex assessment in Indians. Forensic Sci Int 192:129e1. 129.e5. (PMID: 10.1016/j.forsciint.2009.08.008)
Soundarya N, Jain V, Shetty S, Akshatha B (2021) Sexual dimorphism using permanent maxillary and mandibular incisors, canines and molars: an odontometric analysis. J Oral Maxillofac Pathol 25:183–188. https://doi.org/10.4103/jomfp.jomfp_400_20. (PMID: 10.4103/jomfp.jomfp_400_20343494338272500)
Yong R, Ranjitkar S, Lekkas D et al (2018) Three-dimensional (3D) geometric morphometric analysis of human premolars to assess sexual dimorphism and biological ancestry in Australian populations. Am J Phys Anthropol 166:373–385. https://doi.org/10.1002/ajpa.23438. (PMID: 10.1002/ajpa.2343829446438)
Kondo S, Townsend GC, Yamada H (2005) Sexual dimorphism of cusp dimensions in human maxillary molars. Am J Phys Anthropol 128:870–877. https://doi.org/10.1002/ajpa.20084. (PMID: 10.1002/ajpa.2008416110475)
Sonika V, Harshaminder K, Madhushankari G, Kennath J (2011) Sexual dimorphism in the permanent maxillary first molar: a study of the Haryana population (India). J Forensic Odontostomatol 29:37–43. (PMID: 218412675734842)
Zorba E, Moraitis K, Eliopoulos C, Spiliopoulou C (2012) Sex determination in modern Greeks using diagonal measurements of molar teeth. Forensic Sci Int 217:19–26. https://doi.org/10.1016/j.forsciint.2011.09.020. (PMID: 10.1016/j.forsciint.2011.09.02022005548)
Zorba E, Spiliopoulou C, Moraitis K (2013) Evaluation of the accuracy of different molar teeth measurements in assessing sex. Forensic Sci Med Pathol 9:13–23. https://doi.org/10.1007/s12024-012-9372-8. (PMID: 10.1007/s12024-012-9372-822926774)
Kazzazi S, Kranioti EF (2017) Odontometric analysis of sexual dimorphism in permanent maxillary and mandibular molars. J Forensic Sci Criminol 5:102.
Williams B, Rogers T (2006) Evaluating the accuracy and precision of cranial morphological traits for sex determination. J Forensic Sci 51:729–735. https://doi.org/10.1111/j.1556-4029.2006.00177.x. (PMID: 10.1111/j.1556-4029.2006.00177.x16882212)
Christensen AM (2004) The impact of daubert: implications for testimony and research in forensic anthropology (and the use of frontal sinuses in personal identification). J Forensic Sci 49:427–430. https://doi.org/10.1520/JFS2003185. (PMID: 10.1520/JFS200318515171154)
Rogers TL, Allard TT (2004) Expert testimony and positive identification of human remains through cranial suture patterns. J Forensic Sci 49:203–207. https://doi.org/10.1520/JFS2003095. (PMID: 10.1520/JFS200309515027532)
Van Gerven DPV, Oakland GB (1973) Univariate and multivariate statistical model in the analysis of human sexual dimorphism. Stat 22:256–268. https://doi.org/10.2307/2986823. (PMID: 10.2307/2986823)
Yap Potter RH (1972) Univariate versus multivariate differences in tooth size according to sex. J Dent Res 51:716–722. https://doi.org/10.1177/00220345720510030501. (PMID: 10.1177/00220345720510030501)
Chaudhary RK, Doggalli N, Subedi N (2021) Univariate and multivariate sex dimorphism in the diverse age group of the South Indian dentition using the Polyvinyl siloxane elastomeric impression material. Egypt J Forensic Sci 11:35. https://doi.org/10.1186/s41935-021-00248-0. (PMID: 10.1186/s41935-021-00248-0)
Acharya A, Mainali S (2008) Sex discrimination potential of buccolingual and mesiodistal tooth dimensions. J Forensic Sci 53:790–792. https://doi.org/10.1111/j.1556-4029.2008.00778.x. (PMID: 10.1111/j.1556-4029.2008.00778.x18557797)
Austin PC, Steyerberg EW (2017) Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res 26:796–808. https://doi.org/10.1177/0962280214558972. (PMID: 10.1177/096228021455897225411322)
Van Smeden M, De Groot JAH, Moons KGM et al (2016) No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol 16:163. https://doi.org/10.1186/s12874-016-0267-3. (PMID: 10.1186/s12874-016-0267-3278810785122171)
Fujita H (2012) Periodontal diseases in anthropology. Periodontal Diseases - A clinician’s guide. InTech, Rijeka, pp 279–294.
Grimoud A, Gibbon V, Ribot I (2017) Predictive factors for alveolar fenestration and dehiscence. HOMO 68:167–175. https://doi.org/10.1016/j.jchb.2017.03.005. (PMID: 10.1016/j.jchb.2017.03.00528483274)
Nimigean V, Nimigean V, Bencze M et al (2009) Alveolar bone dehiscences and fenestrations: an anatomical study and review. Rom J Morphol Embryol 50:391–397. (PMID: 19690764)
Indra L, Errickson D, Young A, Lösch S (2022) Uncovering forensic taphonomic agents: animal scavenging in the European context. Biology 11:601. https://doi.org/10.3390/biology11040601. (PMID: 10.3390/biology11040601354538009027482)
Viciano J, López-Lázaro S, Tanga C (2022) Post-mortem dental profile as a powerful tool in animal forensic investigations—A review. Animals 12:2038. https://doi.org/10.3390/ani12162038.
Thompson S (2004) Postmortem tooth loss: patterns and indications. Dissertation, Universidad de Tennessee.
Tal H, Artzi Z, Kolerman R et al (2012) Augmentation and preservation of the alveolar process and alveolar ridge of bone. Bone regeneration. InTech, Rijeka. (PMID: 10.5772/1071)
Popović ZB, Thomas JD (2017) Assessing observer variability: a user’s guide. Cardiovasc Diagn Ther 7:317–324. https://doi.org/10.21037/cdt.2017.03.12. (PMID: 10.21037/cdt.2017.03.12285673575440257)
Hernández I, Porta M, Miralles M et al (1990) La Cuantificacíon de La variabilidad En Las observaciones clínicas. Med Clínica Barc 95:424–429.
Prieto L, Lamarca R, Casado A (1998) La evaluación de La fiabilidad En Las observaciones clínicas: El coeficiente de correlación intraclase. Med Clínica Barc 110:142–145.
Harris EF, Smith RN (2009) Accounting for measurement error: a critical but often overlooked process. Arch Oral Biol 54:S107–S117. https://doi.org/10.1016/j.archoralbio.2008.04.010. (PMID: 10.1016/j.archoralbio.2008.04.01018674753)
Kieser J, Groeneveld H, McKee J, Cameron N (1990) Measurement error in human dental mensuration. Ann Hum Biol 17:523–528. https://doi.org/10.1080/03014469000001292. (PMID: 10.1080/030144690000012922281943)
Contributed Indexing: Keywords: Alveolar size; Binary logistic regression; Reconstructive human identification; Sex estimation; Sexual dimorphism
Entry Date(s): Date Created: 20250701 Date Completed: 20251016 Latest Revision: 20251017
Update Code: 20251017
DOI: 10.1007/s00414-025-03555-6
PMID: 40590928
Datenbank: MEDLINE
Beschreibung
Abstract:Teeth play a significant role in reconstructive identification, aiding in the estimation of an individual's biological profile, such as population affinity, sex, and age at death. However, when teeth are lost postmortem-a common occurrence in forensic contexts-alternative methods are required. This study aimed to develop predictive models for sex estimation using alveolar measurements and to evaluate their reliability with a validation sample. Mesiodistal and buccolingual alveolar diameters from both arches were measured in 127 adults (64 males, 63 females) from the Certosa Cemetery osteological collection in Bologna. Binary logistic regression models were developed using a training subsample and tested on a hold-out subsample. The results indicated that the canine alveoli in both arches exhibited the highest sexual dimorphism, followed by those of the central incisor, first premolar, lateral incisor, and second premolar. In the training subsample, univariate predictive models achieved sex classification accuracy ranging from 57.3 to 83.9%, while multivariate models ranged from 68.0 to 91.3%. In the hold-out subsample of 19 individuals, sex was accurately estimated in 89.5% of cases, with a match rate of 63.2% compared with known biological sex. This study highlights the potential of alveolar measurements as a reliable alternative in forensic anthropology, offering a viable method for sex estimation when teeth are unavailable for measurement.<br /> (© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
ISSN:1437-1596
DOI:10.1007/s00414-025-03555-6