Commercial fishing influences the life histories of fish in the world's largest desert lake.

Uložené v:
Podrobná bibliografia
Názov: Commercial fishing influences the life histories of fish in the world's largest desert lake.
Autori: Muehl MF; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA., Olin JA; Department of Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, Michigan, USA., Keyombe JL; Kenya Marine and Fisheries Research Institute, Kisumu, Kenya., Aller JY; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA., Aller RC; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA., Lwiza KMM; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA., Frisk MG; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
Zdroj: Journal of fish biology [J Fish Biol] 2025 Oct; Vol. 107 (4), pp. 1266-1280. Date of Electronic Publication: 2025 Jun 26.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 0214055 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-8649 (Electronic) Linking ISSN: 00221112 NLM ISO Abbreviation: J Fish Biol Subsets: MEDLINE
Imprint Name(s): Publication: 2003- : Oxford, UK : Blackwell Publishing
Original Publication: London, New York, Published for the Fisheries Society of the British Isles by Academic Press.
Výrazy zo slovníka MeSH: Fisheries* , Life History Traits* , Fishes*/physiology , Fishes*/growth & development, Animals ; Lakes
Abstrakt: Lake Turkana, the world's largest permanent desert lake, is an important source of fish for both local consumption and international trade. The growth of Lake Turkana's commercial fishery has increased the risk of overexploiting the lake's fish stocks. Selection pressure from overexploitation of fish stocks often drives shifts in fish life-history traits, including mean length (L mean ), maximum length (L max ) and size at maturity (L mat ). To assess the life-history indicators of overexploitation in Lake Turkana, we compared the life-history traits of six of Lake Turkana's major commercial fish species from three time periods (1930-1953, 1972-1975, 2010-2022) that represent distinct levels of fishing pressure. These focal species were the African butter catfish Schilbe uranoscopus Rüppell 1832, the elongate tigerfish Hydrocynus forskahlii (Cuvier 1819), Nile perch Lates niloticus (L. 1758), Nile tilapia Oreochromis niloticus (L. 1758), silversides Alestes baremose (Joannis 1835) and wahrindi Synodontis schall (Bloch and Schneider 1801). Heavily exploited species exhibited notable decreases in L mat as fishing pressure increased, and include A. baremose (29.7% decrease), H. forskahlii (16.4% decrease), L. niloticus (56.1% decrease) and O. niloticus (45.3% decrease). In contrast, lightly exploited species, including S. uranoscopus and S. schall, did not exhibit large declines in life-history traits. Additionally, we used current catch length frequency data for L. niloticus to infer that L. niloticus are currently experiencing overfishing and exhibit signs of the depletion of large 'mega-spawners'. These results suggest that heavy commercial fishing likely drives the observed life-history responses. We suggest that the management of sustainable fisheries in Lake Turkana should focus on gear size restrictions as well as on reducing fishing effort on commercial-sized fish to decrease the probability of overfishing and potential declines of stocks.
(© 2025 Fisheries Society of the British Isles.)
References: Anderson, C. N. K., Hsieh, C., Sandin, S. A., Hewitt, R., Hollowed, A., Beddington, J., May, R. M., & Sugihara, G. (2008). Why fishing magnifies fluctuations in fish abundance. Nature, 452(7189), 835–839. https://doi.org/10.1038/nature06851.
Avery, S. T., & Tebbs, E. J. (2018). Lake Turkana, major Omo River developments, associated hydrological cycle change and consequent lake physical and ecological change. Journal of Great Lakes Research, 44(6), 1164–1182. https://doi.org/10.1016/j.jglr.2018.08.014.
Babcock, E. A., Coleman, R., Karnauskas, M., & Gibson, J. (2013). Length‐based indicators of fishery and ecosystem status: Glover's reef marine reserve, Belize. Fisheries Research, 147, 434–445.
Babiker, M. M., & Ibrahim, H. (1979). Studies on the biology of reproduction in the cichlid Tilapia nilotica (L.): Gonadal maturation and fecundity. Journal of Fish Biology, 14(5), 437–448.
Baijot, E., & Moreau, J. (1997). Biology and demographic status of the main fish species in the reservoirs of Burkina Faso. Hydrobiological aspects of fisheries in Small Reservoirs in the Sahel Region. Technical Centre for the European Communities, Wageningen, the Netherlands, 79–109.
Beacham, T. D. (1983). Growth and maturity of Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station.
Berrigan, D., & Charnov, E. L. (1994). Reaction norms for age and size at maturity in response to temperature: A puzzle for life historians. Oikos, 70(3), 474. https://doi.org/10.2307/3545787.
Beverton, R. J., & Holt, S. J. (1957). On the dynamics of exploited fish populations (Vol. 11). Springer Science & Business Media.
Beverton, R. J. H. (1992). Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41, 137–160.
Carnell, R. (2016). triangle: Provides the standard distribution functions for the triangle distribution. R package version.
Chapman, L. J., & Sharpe, D. M. (2015). Harvest‐induced phenotypic change in inland fisheries. In J. F. Craig (Ed.), Freshwater Fisheries Ecology (pp. 626–640). John Wiley & Sons.
Conover, D. O., & Munch, S. B. (2002). Sustaining fisheries yields over evolutionary time scales. Science, 297(5578), 94–96. https://doi.org/10.1126/science.1074085.
Cope, J. M., & Punt, A. E. (2009). Length‐based reference points for data‐limited situations: Applications and restrictions. Marine and Coastal Fisheries, 1(1), 169–186.
Cortés, E. (2002). Incorporating uncertainty into demographic modeling: Application to shark populations and their conservation. Conservation Biology, 16(4), 1048–1062.
Dadebo, E. (2016). Length‐weight relationship, breeding season, sex ratio, maturity and fecundity of the Nile catfish Synodontis schall (Bloch and Schneider, 1801) (Pisces: Mochokidae) in Lake Chamo, Ethiopia. Ethiopian Journal of Science and Technology, 9(2), 87–102.
Dadebo, E., & Mengistou, S. (2008). Feeding habits, ontogenetic dietary shift and some aspects of reproduction of the tigerfish Hydrocynus forskahlii (Cuvier 1819) (Pisces: Characidae) in Lake Chamo, Ethiopia. Ethiopian Journal of Biological Sciences, 7(2), 123–137.
Derbyshire, S. F. (2019). Trade, development and destitution: A material culture history of fishing on the western shore of Lake Turkana, northern Kenya. African Studies, 78(3), 324–346. https://doi.org/10.1080/00020184.2018.1519930.
Diekert, F. K. (2012). Growth overfishing: The race to fish extends to the dimension of size. Environmental and Resource Economics, 52, 549–572.
Dunlop, E. S., Heino, M., & Dieckmann, U. (2009). Eco‐genetic modeling of contemporary life‐history evolution. Ecological Applications, 19(7), 1815–1834. https://doi.org/10.1890/08-1404.1.
Ehrhardt, N. M., & Ault, J. S. (1992). Analysis of two length‐based mortality models applied to bounded catch length frequencies. Transactions of the American Fisheries Society, 121(1), 115–122.
Fisher, R. A., Fisher, R. A., Genetiker, S., Fisher, R. A., Genetician, S., Britain, G., Fisher, R. A., & Généticien, S. (1935). The design of experiments (Vol. 21). Oliver and Boyd.
Froese, R. (2004). Keep it simple: Three indicators to deal with overfishing. Fish and Fisheries, 5(1), 86–91.
Froese, R., & Pauly, D. (2024). FishBase. World Wide Web electronic publication. www.fishbase.org, (06/2024).
Gebreegziabher, G. A., Degefa, S., & Furi, W. (2024). A review of the shrinking and expanding eastern Africa rift valley lakes: The case of Ethiopian and Kenyan lakes. Journal of Hydrology: Regional Studies, 54, 101909.
Getahun, A., Wakjira, M., & Nyingi, D. W. (2020). Social, economic and management status of small‐scale fisheries in Omo River Delta and Ethiopian side of Lake Turkana, Southern Ethiopia. Ecohydrology & Hydrobiology, 20(3), 323–332.
Gownaris, N. J., Pikitch, E. K., Ojwang, W. O., Michener, R., & Kaufman, L. (2015). Predicting species’ vulnerability in a massively perturbed system: The fishes of Lake Turkana, Kenya. PLoS One, 10(5), e0127027.
Gownaris, N. J., Pikitch, E. K., Aller, J. Y., Kaufman, L. S., Kolding, J., Lwiza, K. M. M., Obiero, K. O., Ojwang, W. O., Malala, J. O., & Rountos, K. J. (2017). Fisheries and water level fluctuations in the world's largest desert lake. Ecohydrology, 10(1), e1769.
Green, B. S. (2008). Maternal effects in fish populations. Advances in Marine Biology, 54, 1–105. https://doi.org/10.1016/S0065-2881(08)00001-1.
Grimes, C. B., Idelberger, C. F., Able, K. W., & Turner, S. C. (1988). The reproductive‐biology of tilefish, Lopholatilus‐Chamaeleonticeps Goode and bean, from the United‐States mid‐Atlantic bight, and the effects of fishing on the breeding system. Fishery Bulletin, 86(4), 745–762.
Hatch, R. W., Nepszy, S. J., & Rawson, M. R. (1990). Management of percids in Lake Erie, north America. Management of freshwater fisheries. Proceedings of a symposium organized by the European Inland Fisheries Advisory Commission, Gõteborg, Sweden.
Heino, M., Diaz Pauli, B., & Dieckmann, U. (2015). Fisheries‐induced evolution. Annual Review of Ecology, Evolution, and Systematics, 46, 461. https://doi.org/10.1146/annurev-ecolsys-112414-054339.
Heino, M., & Dieckmann, U. (2008). Detecting fisheries‐induced life‐history evolution: An overview of the reaction‐norm approach. Bulletin of Marine Science, 83(1), 69–93.
Herrnegger, M., Stecher, G., Schwatke, C., & Olang, L. (2021). Hydroclimatic analysis of rising water levels in the Great Rift Valley Lakes of Kenya. Journal of Hydrology: Regional Studies, 36, 100857.
Hewitt, D. A., & Hoenig, J. M. (2005). Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin, 103(2), 433.
Hewitt, D. A., Lambert, D. M., Hoenig, J. M., Lipcius, R. N., Bunnell, D. B., & Miller, T. J. (2007). Direct and indirect estimates of natural mortality for Chesapeake Bay blue crab. Transactions of the American Fisheries Society, 136(4), 1030–1040.
Hixon, M. A., Johnson, D. W., & Sogard, S. M. (2014). BOFFFFs: On the importance of conserving old‐growth age structure in fishery populations. ICES Journal of Marine Science, 71(8), 2171–2185.
Hodbod, J., Stevenson, E. G., Akall, G., Akuja, T., Angelei, I., Bedasso, E. A., Buffavand, L., Derbyshire, S., Eulenberger, I., & Gownaris, N. (2019). Social‐ecological change in the Omo‐Turkana basin: A synthesis of current developments. Ambio, 48, 1099–1115.
Hopson, A. (1982). A report on the findings of the Lake Turkana project 1972–1975. ODA, London.
Hsieh, C.‐h., Yamauchi, A., Nakazawa, T., & Wang, W.‐F. (2010). Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Sciences, 72, 165–178.
Jensen, A. L. (1996). Beverton and Holt life history invariants result from optimal trade‐off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences, 53(4), 820–822.
Johnson, T. C., & Malala, J. O. (2009). Lake Turkana and its link to the Nile. Nile: Origin, Environments, Limnology and Human Use, 89, 287–304. https://doi.org/10.1007/978-1-4020-9726-3.
Jorgensen, K., Raa, J., Saetersdal, G., Williams, J., Broch‐Due, V., & Storas, F. (1980). Aid to Fisheries at Lake Turkana‐Evaluations and Recommendations: Report by an Advisory Group Appointed by NORAD September 1980.
Kasozi, N., Degu, G., Atibuni, K., Kisekka, M., Owori‐Wadunde, A., & Mugerwa, S. (2013). Classification of ovarian stages of Alestes baremoze (Joannis, 1835): A step towards understanding its reproductive biology. Frontiers in Science, 3(4), 107–113.
Kenya National Bureau of Statistics. (2022). Statistical abstracts. Kenya National Bureau of Statistics.
Kimani, E., Okemwa, G., & Aura, C. (2018). The status of Kenya fisheries: Towards sustainability exploitation of fisheries resources for food security and economic development. SIDALC: Alliance of Agricultural Services.
KMFRI. (2022). [Unpublished survey]. Kenya Marine and Fisheries Research Institute.
Kolding, J. (1989). The fish resources of Lake Turkana and their environment. University of Bergen, Norway.
Kolding, J. (1992). A summary of Lake Turkana: An ever‐changing mixed environment. SIL Communications, 23(1), 25–35.
Kolding, J. (1993). Population dynamics and life‐history styles of Nile tilapia, Oreochromis niloticus, in Ferguson's Gulf, Lake Turkana, Kenya. Environmental Biology of Fishes, 37, 25–46.
Kolding, J. (1995). Changes in species composition and abundance of fish populations in Lake Turkana, Kenya. In T. J. Pitcher & P. J. B. Hart (Eds.), The Impact of Species Changes in African Lakes (Vol. 18, pp. 335–363). Chapman & Hall Fish and Fisheries Series, Springer, Dordrecht.
Kolding, J., Haug, L., & Stefansson, S. (2008). Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences, 65(7), 1413–1424.
Kolding, J., van Zwieten, P. A., Marttin, F., Funge‐Smith, S., & Poulain, F. (2019). Freshwater small pelagic fish and fisheries in the main African great lakes and reservoirs in relation to food security and nutrition.
Kuparinen, A., Cano, J. M., Loehr, J., Herczeg, G., Gonda, A., & Merila, J. (2011). Fish age at maturation is influenced by temperature independently of growth. Oecologia, 167(2), 435–443. https://doi.org/10.1007/s00442-011-1989-x.
Lomodei, E. (2022). Simulating mesh‐size and selection pattern impacts on the Lake Turkana fisheries sustainability in Kenya. International Journal of Advanced Research, 5(1), 197–214.
Lowe‐McConnell, R. (1958). Observations on the biology of Tilapia nilotica Linné in east African waters. Revue De Zoologie et De Botanique Africaines, 57(1), 2.
Marteinsdottir, G., & Thorarinsson, K. (1998). Improving the stock‐recruitment relationship in Icelandic cod (Gadus morhua) by including age diversity of spawners. Canadian Journal of Fisheries and Aquatic Sciences, 55(6), 1372–1377. https://doi.org/10.1139/cjfas-55-6-1372.
McBride, R. S., Vidal, T. E., & Cadrin, S. X. (2013). Changes in size and age at maturity of the northern stock of tilefish (Lopholatilus chamaeleonticeps) after a period of overfishing. Fishery Bulletin, 111(2), 161–174. https://doi.org/10.7755/Fb.111.2.4.
Mkumbo, O., & Marshall, B. (2015). The Nile perch fishery of L ake V ictoria: Current status and management challenges. Fisheries Management and Ecology, 22(1), 56–63.
Nelson, G. A., & Nelson, M. G. A. (2023). Package ‘fishmethods’.
Njiru, M., Getabu, A., Jembe, T., Ngugi, C., Owili, M., & Van der Knaap, M. (2008). Management of the Nile tilapia (Oreochromis niloticus (L.)) fishery in the Kenyan portion of Lake Victoria, in light of changes in its life history and ecology. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 13(2), 117–124.
Njiru, M., Nzungi, P., Getabu, A., Wakwabi, E., Othina, A., Jembe, T., & Wekesa, S. (2007). Are fisheries management, measures in Lake Victoria successful? The case of Nile perch and Nile tilapia fishery. African Journal of ecology, 45(3), 315.
Obiero, K., Wakjira, M., Gownaris, N., Malala, J., Keyombe, J. L., Ajode, M. Z., Smith, S., Lawrence, T., Ogello, E., & Getahun, A. (2022). Lake Turkana: Status, challenges, and opportunities for collaborative research. Journal of Great Lakes Research, 49(6), 1–16.
Ogutu‐Ohwayo, R., Hecky, R. E., Cohen, A. S., & Kaufman, L. (1997). Human impacts on the African great lakes. Environmental Biology of Fishes, 50, 117–131.
Olilo, C., Malala, J., Keyombe, J., Obiero, M., Bironga, H., Aura, C., Nyamweya, C., & Njiru, J. (2020). Assessing the impact of gillnet fishing on the stocks and predation on population structure of key commercial fish species in Lake Turkana.
Olsen, E. M., Heino, M., Lilly, G. R., Morgan, M. J., Brattey, J., Ernande, B., & Dieckmann, U. (2004). Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature, 428(6986), 932–935. https://doi.org/10.1038/nature02430.
Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science, 39(2), 175–192.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F., Jr. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.
Pilling, G. M., Kirkwood, G. P., & Walker, S. G. (2002). An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Canadian Journal of Fisheries and Aquatic Sciences, 59(3), 424–432.
Policansky, D. (1993). Fishing as a cause of evolution in fishes. The Exploitation of Evolving Resources: Proceedings of an International Conference, held at Jülich, Germany, September 3–5, 1991.
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rabour, C. O., Gichuki, J., & Moreau, J. (2003). Growth, mortality and recruitment of Nile perch Lates niloticus (L. Centropomidae) in the Nyanza Gulf of Lake Victoria: An evaluation update.
Rijnsdorp, A. D. (1993). Fisheries as a large‐scale experiment on life‐history evolution: Disentangling phenotypic and genetic effects in changes in maturation and reproduction of North Sea plaice, Pleuronectes platessa L. Oecologia, 96(3), 391–401. https://doi.org/10.1007/BF00317510.
Sharpe, D., & Chapman, L. (2018). Contemporary phenotypic change in correlated characters in the African cyprinid, Rastrineobola argentea. Biological Journal of the Linnean Society, 124(1), 85–98.
Sibly, R. M., & Atkinson, D. (1994). How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8(4), 486–493. https://doi.org/10.2307/2390073.
Smith, B. D. (2018). Hunting in yellow waters: An ethnoarchaeological perspective on selective fishing on Lake Turkana. Quaternary International, 471, 241–251.
Solemdal, P. (1997). Maternal effects ‐ a link between the past and the future. Journal of Sea Research, 37(3–4), 213–227. https://doi.org/10.1016/S1385-1101(97)00029-4.
Spangler, G. R., Payne, N. R., Thorpe, J. E., Byrne, J. M., Regier, H. A., & Christie, W. J. (1977). Responses of percids to exploitation. Journal of the Fisheries Research Board of Canada, 34(10), 1983–1988. https://doi.org/10.1139/f77-265.
Swain, D. P. (2011). Life‐history evolution and elevated natural mortality in a population of Atlantic cod (Gadus morhua). Evolutionary Applications, 4(1), 18–29. https://doi.org/10.1111/j.1752-4571.2010.00128.x.
Taylor, W., Smale, M., & Brown, R. (1992). An evaluation of size versus age dependent maturation of lake whitefish stocks in the upper Great Lakes. Polskie Archiwum Hydrobiologii, 39(3–4), 269–277.
Tobin, D., & Wright, P. J. (2011). Temperature effects on female maturation in a temperate marine fish. Journal of Experimental Marine Biology and Ecology, 403(1–2), 9–13. https://doi.org/10.1016/j.jembe.2011.03.018.
Trauth, M. H., Maslin, M. A., Deino, A. L., Junginger, A., Lesoloyia, M., Odada, E. O., Olago, D. O., Olaka, L. A., Strecker, M. R., & Tiedemann, R. (2010). Human evolution in a variable environment: The amplifier lakes of eastern Africa. Quaternary Science Reviews, 29(23–24), 2981–2988. https://doi.org/10.1016/j.quascirev.2010.07.007.
Trippel, E. A. (1995). Age at maturity as a stress indicator in fisheries. Bioscience, 45(11), 759–771. https://doi.org/10.2307/1312628.
UNECIA. (2001). The lake Victoria fisheries research project, Phase II, 1997–2001: Final Report of UNECIA Ltd (p. 85). European Commission.
van Wijk, S. J., Taylor, M. I., Creer, S., Dreyer, C., Rodrigues, F. M., Ramnarine, I. W., van Oosterhout, C., & Carvalho, G. R. (2013). Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Frontiers in Ecology and the Environment, 11(4), 181–187.
Velpuri, N. M., & Senay, G. B. (2012). Assessing the potential hydrological impact of the gibe III dam on Lake Turkana water level using multi‐source satellite data. Hydrology and Earth System Sciences, 16(10), 3561–3578.
Witte, F., De Winter, W., & Van Densen, W. L. T. (1995). Appendix II. Biology of the major fish species of Lake Victoria. In Fish stocks and fisheries of Lake Victoria‐A handbook for field observations (pp. 301–320). Samara Publishing.
Worthington, E., & Ricardo, C. (1936). Scientific results of the Cambridge expedition to the east African Lakes, 1930‐1.—No. 15. The fish of Lake Rudolf and Lake Baringo. Zoological Journal of the Linnean Society, 39(267), 353–389.
Zieffler, A. S., Harring, J. R., & Long, J. D. (2011). Comparing groups: Randomization and bootstrap methods using R. John Wiley & Sons.
Grant Information: SEED 2021S Frisk School of Marine and Atmospheric Sciences, Stony Brook University; Stony Brook University
Contributed Indexing: Keywords: African Great Lakes; applied ecology; fisheries; food sustainability; life history; maturity
Entry Date(s): Date Created: 20250626 Date Completed: 20251020 Latest Revision: 20251020
Update Code: 20251020
DOI: 10.1111/jfb.70103
PMID: 40567130
Databáza: MEDLINE
Popis
Abstrakt:Lake Turkana, the world's largest permanent desert lake, is an important source of fish for both local consumption and international trade. The growth of Lake Turkana's commercial fishery has increased the risk of overexploiting the lake's fish stocks. Selection pressure from overexploitation of fish stocks often drives shifts in fish life-history traits, including mean length (L <subscript>mean</subscript> ), maximum length (L <subscript>max</subscript> ) and size at maturity (L <subscript>mat</subscript> ). To assess the life-history indicators of overexploitation in Lake Turkana, we compared the life-history traits of six of Lake Turkana's major commercial fish species from three time periods (1930-1953, 1972-1975, 2010-2022) that represent distinct levels of fishing pressure. These focal species were the African butter catfish Schilbe uranoscopus Rüppell 1832, the elongate tigerfish Hydrocynus forskahlii (Cuvier 1819), Nile perch Lates niloticus (L. 1758), Nile tilapia Oreochromis niloticus (L. 1758), silversides Alestes baremose (Joannis 1835) and wahrindi Synodontis schall (Bloch and Schneider 1801). Heavily exploited species exhibited notable decreases in L <subscript>mat</subscript> as fishing pressure increased, and include A. baremose (29.7% decrease), H. forskahlii (16.4% decrease), L. niloticus (56.1% decrease) and O. niloticus (45.3% decrease). In contrast, lightly exploited species, including S. uranoscopus and S. schall, did not exhibit large declines in life-history traits. Additionally, we used current catch length frequency data for L. niloticus to infer that L. niloticus are currently experiencing overfishing and exhibit signs of the depletion of large 'mega-spawners'. These results suggest that heavy commercial fishing likely drives the observed life-history responses. We suggest that the management of sustainable fisheries in Lake Turkana should focus on gear size restrictions as well as on reducing fishing effort on commercial-sized fish to decrease the probability of overfishing and potential declines of stocks.<br /> (© 2025 Fisheries Society of the British Isles.)
ISSN:1095-8649
DOI:10.1111/jfb.70103