Novel approach for AI-based N 2 O emission reduction in biological wastewater treatment relying on genetic algorithms and neural networks.

Uložené v:
Podrobná bibliografia
Názov: Novel approach for AI-based N 2 O emission reduction in biological wastewater treatment relying on genetic algorithms and neural networks.
Autori: Freyschmidt A; Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany E-mail: freyschmidt@isah.uni-hannover.de., Köster S; Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
Zdroj: Water science and technology : a journal of the International Association on Water Pollution Research [Water Sci Technol] 2025 May; Vol. 91 (10), pp. 1172-1184. Date of Electronic Publication: 2025 May 06.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: IWA Publishing Country of Publication: England NLM ID: 9879497 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0273-1223 (Print) Linking ISSN: 02731223 NLM ISO Abbreviation: Water Sci Technol Subsets: MEDLINE
Imprint Name(s): Publication: <1998->: London : IWA Publishing
Original Publication: Oxford ; New York : Pergamon Press, 1981-
Výrazy zo slovníka MeSH: Neural Networks, Computer* , Algorithms* , Wastewater*/chemistry , Waste Disposal, Fluid*/methods , Artificial Intelligence* , Nitrous Oxide* , Water Purification*/methods, Genetic Algorithms
Abstrakt: The potential of measurement-based control strategies for achieving lower N 2 O emissions in biological wastewater treatment is limited due to strong temporal variations in N 2 O emissions and a lack of measurement data regarding influencing parameters. To address this issue, a novel artificial intelligence (AI)-based process optimization method for minimizing N 2 O emissions was developed, relying on a genetic algorithm to automatically determine the control settings associated with minimum N 2 O emissions for an individual operating situation. The genetic algorithm employs a validated prediction model to evaluate the effect of individual control parameter sets on N 2 O emissions and other operating targets. For this purpose, neural networks were trained using data generated with a mechanistic model. This approach is beneficial in practical applications as prediction networks could be successfully trained even if only limited data is available. The developed method also includes a classification algorithm to check the reliability of the AI-suggested control strategy. Two modeling studies confirm that the practical application of the developed methodology holds the potential for a considerable reduction in emissions (43% or 1,588 t CO 2 e/a) while still achieving the required effluent quality. Operational settings are identified in less than 2 minutes so that the approach can be applied on a large scale.
(© 2025 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).)
Competing Interests: The authors declare there is no conflict.
References: Backhaus K., Erichson B. & Weiber R. (2015) Fortgeschrittene Multivariate Analysemethoden [Advanced Multivariate Analysis Methods]. Berlin, Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-662-46087-0.
Beier M., Feldkämper I. & Freyschmidt A. (2021) Model assisted identification of N 2 O mitigation strategies for full-scale reject water treatment plants, Water Science and Technology, 39 (6), 1832. doi:10.2166/wst.2021.141.
Breiman L. (1996) Bagging predictors, Machine Learning, 24 (2), 123–140. doi:10.1007/BF00058655.
Chandran K., Stein L., Klotz M. G. & van Loosdrecht M. C. M. (2011) Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems, Biochemical Society Transactions, 39 (6), 1832–1837. doi:10.1042/BST20110717. (PMID: 22103535)
Daelman M. R. J., van Voorthuizen E. M., van Dongen U. G. J. M., Volcke E. I. P. & van Loosdrecht M. C. M. (2015) Seasonal and diurnal variability of N 2 O emissions from a full-scale municipal wastewater treatment plant, Science of The Total Environment, 536, 1–11. doi:10.1016/j.scitotenv.2015.06.122. (PMID: 26188527)
Duan, H., van den Akker, B., Thwaites, B. J., Peng, L., Herman, C., Pan, Y., Ni, B.-J., Watt, S., Yuan, Z. & Ye, L. (2020) Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant, Water Research, 185, 116196. doi:10.1016/j.watres.2020.116196. (PMID: 32738601)
Freyschmidt A. & Beier M. (2022) Model-based identification and testing of appropriate strategies to minimize N 2 O emissions from biofilm deammonification, Water Science and Technology, 86 (7), 1810–1820. doi:10.2166/wst.2022.307. (PMID: 36240313)
Hwangbo S., Al R., Chen X. & Sin G. (2021) Integrated model for understanding N 2 O emissions from wastewater treatment plants: a deep learning approach, Environmental Science & Technology, 55 (3), 2143–2151. doi:10.1021/acs.est.0c05231.
Icha, P., Lauf, T. & Kuhs, G. (2022) Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990–2021 [Development of the specific greenhouse gas emissions of the German energy mixture in the years 1990–2021] . Dessau-Roßlau, Germany: Umweltbundesamt. ISSN 1862-4359.
IPCC (2021) IPCC 6th Assessment Report, The Physical Science Basis. Cambridge, UK and New York, NY, USA: Intergovernmental Panel on Climate Change.
Kuokkanen A., Blomberg K., Mikola A. & Heinonen M. (2021) Unwanted mainstream nitritation-denitritation causing massive N 2 O emissions in a continuous activated sludge process, Water Science and Technology, 83 (9), 2207–2217. doi:10.2166/wst.2021.127. (PMID: 33989187)
Li, K., Duan, H., Liu, L., Qiu, R., van den Akker, B., Ni, B.-J., Chen, T., Yin, H., Yuan, Z. & Ye, L. (2022) An integrated first principal and deep learning approach for modeling nitrous oxide emissions from wastewater treatment plants, Environmental Science & Technology, 56 (4), 2816–2826. doi:10.1021/acs.est.1c05020.
Matheri A. N., Mohamed B., Ntuli F., Nabadda E. & Ngila J. C. (2022) Sustainable circularity and intelligent data-driven operations and control of the wastewater treatment plant, Physics and Chemistry of the Earth, 126, 103152. doi:10.1016/j.pce.2022.103152.
Mehrani M.-J., Bagherzadeh F., Zheng M., Kowal P., Sobotka D. & Mąkinia J. (2022) Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N 2 O) production in a nitrifying sequencing batch reactor, Process Safety and Environmental Protection, 162, 1015–1024. doi:10.1016/j.psep.2022.04.058.
Nissen V. (1997) Einführung in Evolutionäre Algorithmen [Introduction to Evolutionary Algorithms]. Wiesbaden, Germany: Vieweg + Teubner Verlag. https://doi.org/10.1007/978-3-322-93861-9.
Parravicini, V., Valkova, T., Haslinger, J., Saracevic, E., Winkelbauer, A., Tauber, J., Svardal, K., Hohenblum, P., Clara, M., Windhofer, G., Pazdernik, K. & Lampert, C. (2015) Abschlussbericht des Forschungsprojektes ReLaKO (Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes) [Final Report of the ReLaKO Research Project (Reduction Potential for Nitrous Oxide Emissions from Wastewater Treatment Plants Through Optimization of Operation)]. Vienna, Austria: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft.
Peng L., Carvajal-Arroyo J. M., Seuntjens D., Prat D., Colica G., Pin-tucci C. & Vlaeminck S. E. (2017) Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate, Water Research, 127, 1–10. doi:10.1016/j.watres.2017.09.049. (PMID: 28992459)
Ribera-Guardia A., Kassotaki E., Gutierrez O. & Pijuan M. (2014) Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community, Process Biochemistry, 49 (12), 2228–2234. doi:10.1016/j.procbio.2014.09.020.
Schneider Y., Beier M. & Rosenwinkel K.-H. (2013) Nitrous oxide formation during nitritation and nitrification of high-strength wastewater, Water Science and Technology, 67 (11), 2494–2502. doi:10.2166/wst.2013.144. (PMID: 23752381)
Seggelke K., Rosenwinkel K.-H., Vanrolleghem P. A. & Krebs P. (2005) Integrated operation of sewer system and WWTP by simulation-based control of the WWTP inflow, Water Science and Technology, 52 (5), 195–203. https://doi.org/10.2166/wst.2005.0134. (PMID: 16248196)
Valkova T., Parravicini V., Saracevic E., Tauber J., Svardal K. & Krampe J. (2021) A method to estimate the direct nitrous oxide emissions of municipal wastewater treatment plants based on the degree of nitrogen removal, Journal of Environ-Mental Management, 279, 111563. doi:10.1016/j.jenvman.2020.111563.
Zhou Y., Pijuan M., Zeng R. J. & Yuan Z. (2008) Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge, Environmental Science & Technology, 42 (22), 8260–8265. doi:10.1021/es800650j.
Grant Information: Volkswagen Foundation; Niedersächsisches Ministerium für Wissenschaft und Kultur; Bundesministerium für Bildung und Forschung
Contributed Indexing: Keywords: N 2 O mitigation strategies; N 2 O modeling; genetic algorithms; neural networks; wastewater treatment control strategies
Substance Nomenclature: 0 (Wastewater)
K50XQU1029 (Nitrous Oxide)
Entry Date(s): Date Created: 20250531 Date Completed: 20250531 Latest Revision: 20250531
Update Code: 20250601
DOI: 10.2166/wst.2025.060
PMID: 40448459
Databáza: MEDLINE
Popis
Abstrakt:The potential of measurement-based control strategies for achieving lower N <subscript>2</subscript> O emissions in biological wastewater treatment is limited due to strong temporal variations in N <subscript>2</subscript> O emissions and a lack of measurement data regarding influencing parameters. To address this issue, a novel artificial intelligence (AI)-based process optimization method for minimizing N <subscript>2</subscript> O emissions was developed, relying on a genetic algorithm to automatically determine the control settings associated with minimum N <subscript>2</subscript> O emissions for an individual operating situation. The genetic algorithm employs a validated prediction model to evaluate the effect of individual control parameter sets on N <subscript>2</subscript> O emissions and other operating targets. For this purpose, neural networks were trained using data generated with a mechanistic model. This approach is beneficial in practical applications as prediction networks could be successfully trained even if only limited data is available. The developed method also includes a classification algorithm to check the reliability of the AI-suggested control strategy. Two modeling studies confirm that the practical application of the developed methodology holds the potential for a considerable reduction in emissions (43% or 1,588 t CO <subscript>2</subscript> e/a) while still achieving the required effluent quality. Operational settings are identified in less than 2 minutes so that the approach can be applied on a large scale.<br /> (© 2025 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).)
ISSN:0273-1223
DOI:10.2166/wst.2025.060