Muscle regeneration is improved by hot water immersion but unchanged by cold following a simulated musculoskeletal injury in humans.

Uložené v:
Podrobná bibliografia
Názov: Muscle regeneration is improved by hot water immersion but unchanged by cold following a simulated musculoskeletal injury in humans.
Autori: Dablainville V; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar.; DMEM, University of Montpellier, INRAE, Montpellier, France., Mornas A; French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.; University Paris Cité, Paris, France.; Montreal Heart Institute, Montréal, Quebec, Canada., Normand-Gravier T; DMEM, University of Montpellier, INRAE, Montpellier, France.; Faculty of Sports Sciences, Laboratoire interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, University of Perpignan Via Domitia (UPVD), Font-Romeu, France., Al-Mulla M; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar., Papakostas E; Aspetar Orthopaedic and Sports Medicine Hospital, Surgery Department, Doha, Qatar., Olory B; Aspetar Orthopaedic and Sports Medicine Hospital, Surgery Department, Doha, Qatar., Fermin TM; Aspetar Orthopaedic and Sports Medicine Hospital, Surgery Department, Doha, Qatar.; Centro Médico Profesional Las Mercedes, Caracas, Venezuela., Zampeli F; Aspetar Orthopaedic and Sports Medicine Hospital, Surgery Department, Doha, Qatar.; Hand-Upper Limb-Microsurgery Department, General Hospital KAT, Kifisia, Greece., Nader N; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar., Alhammoud M; Aspetar Orthopaedic and Sports Medicine Hospital, Surgery Department, Doha, Qatar.; Inter-University Laboratory of Human Movement Biology (EA 7424), Savoie Mont Blanc University, Chambéry, France., Bayne F; Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK., Sanchez AMJ; Faculty of Sports Sciences, Laboratoire interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, University of Perpignan Via Domitia (UPVD), Font-Romeu, France., Cardinale M; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar.; Institute of Sport, Exercise and Health, University College London, London, UK.; Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK., Candau R; DMEM, University of Montpellier, INRAE, Montpellier, France., Bernardi H; DMEM, University of Montpellier, INRAE, Montpellier, France., Racinais S; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar.; DMEM, University of Montpellier, INRAE, Montpellier, France.; French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.; CREPS Montpellier Font-Romeu, Environmental Stress Unit, Montpellier, France.
Zdroj: The Journal of physiology [J Physiol] 2025 Dec; Vol. 603 (23), pp. 7603-7625. Date of Electronic Publication: 2025 May 28.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: Cambridge Univ. Press Country of Publication: England NLM ID: 0266262 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-7793 (Electronic) Linking ISSN: 00223751 NLM ISO Abbreviation: J Physiol Subsets: MEDLINE
Imprint Name(s): Publication: Oxford : Blackwell : Cambridge Univ. Press
Original Publication: London, Cambridge Univ. Press.
Výrazy zo slovníka MeSH: Muscle, Skeletal*/physiology , Muscle, Skeletal*/injuries , Regeneration* , Hot Temperature* , Cold Temperature* , Cryotherapy*/methods, Humans ; Male ; Female ; Adult ; Immersion ; Young Adult ; Water ; Creatine Kinase/blood ; Myoglobin/blood
Abstrakt: Cryotherapy is a popular strategy for the treatment of skeletal muscle injuries. However, its effect on post-injury human muscle regeneration remains unclear. In contrast, promising results recently emerged using heat therapy to facilitate recovery from muscle injury. This study aimed to examine the effect of three different thermal treatments on muscle recovery and regeneration following a simulated injury in humans. Thirty-four participants underwent a muscle damage protocol induced by electrically stimulated eccentric contractions triggering regenerative processes following myofibre necrosis. Thereafter, participants were exposed to daily lower body water immersion for 10 days in cold (CWI, 15 min at 12°C), thermoneutral (TWI, 30 min at 32°C) or hot water immersion (HWI, 60 min at 42°C). Muscle biopsies were sampled before and at +5 (D5) and +11 (D11) days post-damage. None of the water immersions differed in recovery of force-generating capacity (P = 0.108). HWI induced a lower perceived muscle pain than TWI (P = 0.035) and lower levels of circulating creatine kinase (P ≤ 0.012) and myoglobin (P < 0.001) than TWI and CWI. Contrary to our hypothesis, CWI did not improve perceived muscle pain or reduce circulating markers of muscle damage (P ≥ 0.207). Expression of heat shock proteins 27 and 70 was significantly increased in HWI (P < 0.038) at D11 and appeared blunted using CWI. Furthermore, nuclear factor-κB expression significantly increased in all conditions except HWI, while interleukin-10 was upregulated only in HWI at D11 (P = 0.014). In conclusion, our results support the use of HWI but not cold, to improve muscle regeneration following an injury. KEY POINTS: Cryotherapy and heat therapy are popular strategies in the treatment of skeletal muscle injury; however, existing literature is equivocal, and their effects on human muscle regeneration remain unknown. We investigated the effect of three thermal treatments (cold water immersion (CWI): 15 min at 12°C; thermoneutral water immersion (TWI): 30 min at 32°C; or hot water immersion (HWI): 60 min at 42°C) performed daily for 10 days following electrically stimulated eccentric muscle damage inducing regenerative mechanisms. CWI did not improve chronic perceived muscle pain nor reduce circulating markers of muscle damage. HWI limited chronic perceived pain and circulating markers of muscle damage, potentially influenced inflammatory mechanisms, and increased the expression of heat shock proteins. HWI appears more beneficial than CWI in improving muscle regeneration after a muscle injury.
(© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
References: J Rehabil Med. 2022 Feb 08;54:jrm00258. (PMID: 34636405)
Histochem Cell Biol. 2023 Jan;159(1):77-89. (PMID: 36114866)
Br J Sports Med. 2007 Jun;41(6):392-7. (PMID: 17261562)
Br J Sports Med. 2010 Feb;44(3):179-87. (PMID: 19945970)
PLoS One. 2013 Apr 23;8(4):e62687. (PMID: 23626847)
J Mol Med (Berl). 2008 Jul;86(7):747-59. (PMID: 18246321)
Cells. 2020 May 22;9(5):. (PMID: 32456017)
Behav Res Methods. 2009 Nov;41(4):1149-60. (PMID: 19897823)
J Musculoskelet Neuronal Interact. 2014 Sep;14(3):325-33. (PMID: 25198228)
Acta Physiol (Oxf). 2013 Feb;207(2):416-26. (PMID: 23167446)
Am J Sports Med. 2004 Jan-Feb;32(1):251-61. (PMID: 14754753)
J Appl Physiol (1985). 2023 Dec 1;135(6):1403-1414. (PMID: 37705447)
Muscle Nerve. 2015 Dec;52(6):1047-56. (PMID: 25900407)
J Immunol. 2012 Oct 1;189(7):3669-80. (PMID: 22933625)
Clin J Sport Med. 2017 Jul;27(4):329-337. (PMID: 27454218)
FASEB J. 2011 Sep;25(9):2956-66. (PMID: 21602448)
Acta Physiol Scand. 2001 Feb;171(2):187-93. (PMID: 11350279)
J Appl Physiol (1985). 2019 Jun 1;126(6):1598-1606. (PMID: 30896355)
Mol Cell Biochem. 2012 Oct;369(1-2):45-53. (PMID: 22733363)
J Physiol. 2017 Feb 1;595(3):695-711. (PMID: 27704555)
J Athl Train. 2002 Apr;37(2):209-17. (PMID: 16558673)
J Physiol. 2015 Sep 15;593(18):4285-301. (PMID: 26174323)
Phys Ther Sport. 2014 Nov;15(4):228-33. (PMID: 24768476)
Eur J Appl Physiol. 2020 Dec;120(12):2625-2634. (PMID: 32880050)
FASEB J. 2020 May;34(5):6418-6436. (PMID: 32167202)
Innov Aging. 2019 Sep 04;3(4):igz036. (PMID: 31528719)
Am J Physiol Regul Integr Comp Physiol. 2014 Oct 15;307(8):R998-R1008. (PMID: 25121612)
Am J Physiol Regul Integr Comp Physiol. 2022 Jul 1;323(1):R133-R148. (PMID: 35536704)
Br J Sports Med. 2024 Oct 22;58(20):1215-1223. (PMID: 39237265)
Eur J Sport Sci. 2025 Mar;25(3):e12235. (PMID: 39665595)
Acta Histochem. 2014 Mar;116(2):327-34. (PMID: 24071519)
J Athl Train. 2004 Mar;39(1):88-94. (PMID: 15085216)
Scand J Med Sci Sports. 2005 Dec;15(6):416-22. (PMID: 16293154)
Scand J Med Sci Sports. 2015 Jun;25 Suppl 1:20-38. (PMID: 25943654)
Cell Biol Int. 2017 Jul;41(7):706-715. (PMID: 28035727)
J Physiol Sci. 2016 Jul;66(4):345-57. (PMID: 26759024)
Int J Sports Med. 2016 Nov;37(12):937-943. (PMID: 27557407)
Postgrad Med. 2015 Jan;127(1):57-65. (PMID: 25526231)
Clin Rehabil. 2011 May;25(5):433-41. (PMID: 21059665)
Am J Physiol Regul Integr Comp Physiol. 2015 Aug 15;309(4):R389-98. (PMID: 26062633)
Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R651-61. (PMID: 17522124)
Am J Physiol Regul Integr Comp Physiol. 2018 Jun 1;314(6):R824-R833. (PMID: 29466686)
Eur J Appl Physiol. 2011 Oct;111(10):2427-37. (PMID: 21811767)
FASEB J. 2016 Jun;30(6):2266-81. (PMID: 26936358)
PLoS One. 2015 Sep 28;10(9):e0139028. (PMID: 26413718)
Med Sci Sports Exerc. 2024 Dec 1;56(12):2362-2371. (PMID: 38967392)
Am J Physiol Regul Integr Comp Physiol. 2023 Apr 1;324(4):R574-R588. (PMID: 36878487)
J Appl Physiol (1985). 2019 Jul 1;127(1):47-57. (PMID: 31046520)
Emerg Med J. 2008 Feb;25(2):65-8. (PMID: 18212134)
J Appl Physiol (1985). 2020 Apr 1;128(4):1012-1022. (PMID: 32191599)
Eur J Appl Physiol. 2008 Mar;102(4):447-55. (PMID: 17978833)
FASEB J. 2008 Nov;22(11):3836-45. (PMID: 18644837)
J Physiol Sci. 2016 Jan;66(1):43-52. (PMID: 26467448)
Scand J Med Sci Sports. 2017 Nov;27(11):1356-1363. (PMID: 27430594)
Eur J Appl Physiol. 2019 Jan;119(1):135-147. (PMID: 30310979)
Acta Histochem. 2020 Apr;122(3):151511. (PMID: 31992448)
Sci Rep. 2018 Jul 19;8(1):10961. (PMID: 30026562)
Front Physiol. 2020 Jul 14;11:839. (PMID: 32765299)
Scand J Med Sci Sports. 2021 Mar;31(3):610-622. (PMID: 33176018)
J Appl Physiol (1985). 2016 Jan 15;120(2):188-95. (PMID: 26542520)
J Strength Cond Res. 2013 May;27(5):1354-61. (PMID: 22820210)
J Appl Physiol (1985). 2019 Apr 1;126(4):965-976. (PMID: 30605396)
J Physiol. 2020 Feb;598(4):755-772. (PMID: 31788800)
Orthop J Sports Med. 2024 Oct 21;12(10):23259671241281727. (PMID: 39444938)
J Clin Endocrinol Metab. 2021 Jun 16;106(7):2057-2076. (PMID: 33710344)
Front Physiol. 2021 Nov 24;12:752347. (PMID: 34899384)
Arch Phys Med Rehabil. 2006 Oct;87(10):1310-7. (PMID: 17023239)
Physiol Rev. 2010 Apr;90(2):495-511. (PMID: 20393192)
Sports Med Open. 2022 Mar 7;8(1):37. (PMID: 35254558)
Sci Rep. 2016 Jan 04;6:18525. (PMID: 26725948)
Front Physiol. 2020 Jun 30;11:737. (PMID: 32695024)
Jpn J Physiol. 2004 Jun;54(3):263-71. (PMID: 15541204)
Sports Med. 2022 Jul;52(7):1667-1688. (PMID: 35157264)
Int J Biochem Cell Biol. 2014 Nov;56:56-65. (PMID: 25242742)
Sports Med. 2013 Nov;43(11):1101-30. (PMID: 23743793)
Muscles Ligaments Tendons J. 2014 Feb 24;3(4):337-45. (PMID: 24596699)
Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R844-53. (PMID: 17522120)
Cells Tissues Organs. 2011;194(5):363-70. (PMID: 21422748)
Hum Mol Genet. 2011 May 1;20(9):1787-99. (PMID: 21320869)
Skelet Muscle. 2023 Aug 12;13(1):13. (PMID: 37573332)
Br J Sports Med. 2007 Jun;41(6):365-9; discussion 369. (PMID: 17224445)
J Physiol Sci. 2011 Mar;61(2):131-40. (PMID: 21222186)
J Appl Physiol (1985). 2009 Nov;107(5):1612-21. (PMID: 19556452)
J Mol Med (Berl). 2008 Oct;86(10):1113-26. (PMID: 18574572)
J Appl Physiol (1985). 2011 Feb;110(2):382-8. (PMID: 21164157)
Eur J Appl Physiol. 2012 Jul;112(7):2483-94. (PMID: 22057508)
J Appl Physiol (1985). 2021 Feb 25;:. (PMID: 33630675)
Eur J Appl Physiol. 2025 Feb;125(2):277-301. (PMID: 39607529)
Sports Med. 2006;36(9):747-65. (PMID: 16937951)
Skelet Muscle. 2017 Nov 7;7(1):24. (PMID: 29115986)
Scand J Med Sci Sports. 2020 Mar;30(3):485-495. (PMID: 31677292)
Physiol Rep. 2023 Aug;11(16):e15791. (PMID: 37620103)
J Physiol. 2007 Aug 15;583(Pt 1):365-80. (PMID: 17584833)
J Appl Physiol (1985). 2021 May 1;130(5):1410-1420. (PMID: 33764172)
Gen Physiol Biophys. 2010 Sep;29(3):234-42. (PMID: 20817947)
J Sports Sci Med. 2008 Jun 01;7(2):235-41. (PMID: 24149455)
Br J Sports Med. 2012 Mar;46(4):233-40. (PMID: 21947816)
Front Physiol. 2017 Mar 07;8:93. (PMID: 28326040)
J Orthop Sci. 2007 Jan;12(1):74-82. (PMID: 17260121)
Eur J Appl Physiol. 2018 Jan;118(1):153-163. (PMID: 29127510)
J Physiol Sci. 2018 Sep;68(5):629-637. (PMID: 29027134)
Eur J Appl Physiol. 2020 Dec;120(12):2611-2624. (PMID: 32865616)
Cell Stress Chaperones. 1999 Mar;4(1):1-7. (PMID: 10467103)
J Therm Biol. 2024 Aug;124:103925. (PMID: 39241530)
Eur J Appl Physiol. 2013 Oct;113(10):2577-86. (PMID: 23873339)
Scand J Med Sci Sports. 2024 Jan;34(1):e14503. (PMID: 37747708)
Shock. 2006 Sep;26(3):277-84. (PMID: 16912653)
J Appl Physiol (1985). 2021 Jul 1;131(1):277-289. (PMID: 34013754)
J Appl Physiol (1985). 2017 Mar 1;122(3):559-570. (PMID: 28035017)
J Appl Physiol (1985). 2011 Sep;111(3):818-24. (PMID: 21680875)
Eur J Appl Physiol. 2009 Mar;105(4):615-21. (PMID: 19034491)
Sports Med. 2016 Apr;46(4):503-14. (PMID: 26581833)
Skelet Muscle. 2023 Feb 14;13(1):3. (PMID: 36788624)
Nat Rev Dis Primers. 2023 Oct 19;9(1):56. (PMID: 37857686)
Eur J Appl Physiol. 2021 Aug;121(8):2125-2142. (PMID: 33877402)
J Physiol. 2004 Jul 1;558(Pt 1):333-40. (PMID: 15121802)
Nat Rev Immunol. 2017 Mar;17(3):165-178. (PMID: 28163303)
Sports Med. 2018 Jun;48(6):1311-1328. (PMID: 29470824)
Grant Information: 2022 Aspire Zone Foundation
Contributed Indexing: Keywords: CWI; HWI; damage; electrically stimulated eccentric contraction; muscle injury
Substance Nomenclature: 059QF0KO0R (Water)
EC 2.7.3.2 (Creatine Kinase)
0 (Myoglobin)
Entry Date(s): Date Created: 20250529 Date Completed: 20251201 Latest Revision: 20251203
Update Code: 20251203
PubMed Central ID: PMC12666504
DOI: 10.1113/JP287777
PMID: 40437768
Databáza: MEDLINE
Popis
Abstrakt:Cryotherapy is a popular strategy for the treatment of skeletal muscle injuries. However, its effect on post-injury human muscle regeneration remains unclear. In contrast, promising results recently emerged using heat therapy to facilitate recovery from muscle injury. This study aimed to examine the effect of three different thermal treatments on muscle recovery and regeneration following a simulated injury in humans. Thirty-four participants underwent a muscle damage protocol induced by electrically stimulated eccentric contractions triggering regenerative processes following myofibre necrosis. Thereafter, participants were exposed to daily lower body water immersion for 10 days in cold (CWI, 15 min at 12°C), thermoneutral (TWI, 30 min at 32°C) or hot water immersion (HWI, 60 min at 42°C). Muscle biopsies were sampled before and at +5 (D5) and +11 (D11) days post-damage. None of the water immersions differed in recovery of force-generating capacity (P = 0.108). HWI induced a lower perceived muscle pain than TWI (P = 0.035) and lower levels of circulating creatine kinase (P ≤ 0.012) and myoglobin (P &lt; 0.001) than TWI and CWI. Contrary to our hypothesis, CWI did not improve perceived muscle pain or reduce circulating markers of muscle damage (P ≥ 0.207). Expression of heat shock proteins 27 and 70 was significantly increased in HWI (P &lt; 0.038) at D11 and appeared blunted using CWI. Furthermore, nuclear factor-κB expression significantly increased in all conditions except HWI, while interleukin-10 was upregulated only in HWI at D11 (P = 0.014). In conclusion, our results support the use of HWI but not cold, to improve muscle regeneration following an injury. KEY POINTS: Cryotherapy and heat therapy are popular strategies in the treatment of skeletal muscle injury; however, existing literature is equivocal, and their effects on human muscle regeneration remain unknown. We investigated the effect of three thermal treatments (cold water immersion (CWI): 15 min at 12°C; thermoneutral water immersion (TWI): 30 min at 32°C; or hot water immersion (HWI): 60 min at 42°C) performed daily for 10 days following electrically stimulated eccentric muscle damage inducing regenerative mechanisms. CWI did not improve chronic perceived muscle pain nor reduce circulating markers of muscle damage. HWI limited chronic perceived pain and circulating markers of muscle damage, potentially influenced inflammatory mechanisms, and increased the expression of heat shock proteins. HWI appears more beneficial than CWI in improving muscle regeneration after a muscle injury.<br /> (© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
ISSN:1469-7793
DOI:10.1113/JP287777