Visual imagery of familiar people and places in category selective cortex.

Gespeichert in:
Bibliographische Detailangaben
Titel: Visual imagery of familiar people and places in category selective cortex.
Autoren: Scrivener CL; School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.; School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK., Teed JA; School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK., Silson EH; School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
Quelle: Neuroscience of consciousness [Neurosci Conscious] 2025 Apr 16; Vol. 2025 (1), pp. niaf006. Date of Electronic Publication: 2025 Apr 16 (Print Publication: 2025).
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Oxford University Press Country of Publication: England NLM ID: 101679109 Publication Model: eCollection Cited Medium: Internet ISSN: 2057-2107 (Electronic) Linking ISSN: 20572107 NLM ISO Abbreviation: Neurosci Conscious Subsets: PubMed not MEDLINE
Imprint Name(s): Original Publication: [Oxford] : Oxford University Press, [2015]-
Abstract: Visual imagery is a dynamic process recruiting a network of brain regions. We used electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) fusion to investigate the dynamics of category selective imagery in medial parietal cortex (MPC), ventral temporal cortex (VTC), and primary visual cortex (V1). Subjects attended separate EEG and fMRI sessions where they created mental images of personally familiar people and place stimuli. The fMRI contrast comparing people and place imagery replicated previous findings of category-selectivity in the medial parietal cortex. In addition, greater activity for places was found in the ventral and lateral place memory areas, the frontal eye fields, the inferior temporal sulcus, and the intraparietal sulcus. In contrast, greater activity for people was found in the fusiform face area and the right posterior superior temporal sulcus. Using multivariate decoding analysis in fMRI, we could decode individual stimuli within the preferred category in VTC. A more complex pattern emerged in MPC, which represented information that was not restricted to the preferred category. We were also able to decode category and individual stimuli in the EEG data. EEG-fMRI fusion indicated similar timings in MPC and VTC activity during imagery. However, in the VTC, fusion was higher in place selective regions during an early time window, and higher in face selective regions in a later time window. In contrast, fusion correlations in V1 occurred later during the imagery period, possibly reflecting the top-down progression of mental imagery from category-selective regions to primary visual cortex.
(© The Author(s) 2025. Published by Oxford University Press.)
Competing Interests: None declared.
References: Neuroimage. 2012 Apr 15;60(3):1759-70. (PMID: 22209809)
Psychol Sci. 2023 Nov;34(11):1229-1243. (PMID: 37782827)
Curr Biol. 2013 Aug 5;23(15):1427-31. (PMID: 23871239)
Neurosci Biobehav Rev. 2021 Mar;122:201-217. (PMID: 33422567)
Cortex. 2023 Jan;158:71-82. (PMID: 36459788)
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82. (PMID: 11209064)
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50):. (PMID: 34880133)
Elife. 2019 Sep 10;8:. (PMID: 31502539)
PLoS Comput Biol. 2014 Apr 17;10(4):e1003553. (PMID: 24743308)
Trends Cogn Sci. 2024 May;28(5):467-480. (PMID: 38548492)
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16187-92. (PMID: 24038744)
Nat Neurosci. 2001 May;4(5):533-9. (PMID: 11319563)
J Cogn Neurosci. 2017 Apr;29(4):677-697. (PMID: 27779910)
Curr Biol. 2020 Jul 6;30(13):2621-2627.e5. (PMID: 32531274)
Neuroimage. 2003 Jun;19(2 Pt 1):261-70. (PMID: 12814577)
Front Neurosci. 2021 Jun 29;15:636424. (PMID: 34267620)
Brain Struct Funct. 2022 Dec;227(9):3075-3083. (PMID: 35622159)
Cortex. 2018 Aug;105:4-25. (PMID: 29502874)
Schweiz Arch Neurol Psychiatr (1985). 1988;139(1):5-15. (PMID: 2451281)
eNeuro. 2016 Oct 24;3(5):. (PMID: 27822493)
Cortex. 2008 Feb;44(2):109-18. (PMID: 18387540)
Neuroimage. 2012 Nov 15;63(3):1646-69. (PMID: 22784644)
Nat Commun. 2021 May 11;12(1):2632. (PMID: 33976141)
Neuroimage. 2012 Aug 15;62(2):768-73. (PMID: 21945692)
Elife. 2019 Jul 15;8:. (PMID: 31305238)
J Neurosci. 2015 Aug 26;35(34):11921-35. (PMID: 26311774)
Neuroimage. 2017 Feb 15;147:952-959. (PMID: 27729277)
Neuroimage. 2012 Feb 15;59(4):4064-73. (PMID: 22040738)
Neuron. 2020 Sep 9;107(5):772-781. (PMID: 32721379)
eNeuro. 2025 Jan 15;12(1):. (PMID: 39746804)
Trends Cogn Sci. 2019 May;23(5):423-434. (PMID: 30876729)
Cereb Cortex. 2021 Mar 5;31(4):1898-1913. (PMID: 33285563)
Neuroimage. 2008 Jan 15;39(2):647-60. (PMID: 17977024)
J Neurosci. 2013 Nov 27;33(48):18814-24. (PMID: 24285888)
Nat Rev Neurosci. 2012 Oct;13(10):713-26. (PMID: 22992647)
Neuroimage. 2016 May 15;132:32-42. (PMID: 26899782)
Nature. 1998 Apr 9;392(6676):598-601. (PMID: 9560155)
J Neurosci. 1997 Jun 1;17(11):4302-11. (PMID: 9151747)
Curr Biol. 2020 Jul 20;30(14):2707-2715.e3. (PMID: 32502406)
Neuroimage. 2022 Nov;263:119587. (PMID: 36031183)
Nat Rev Neurosci. 2019 Oct;20(10):624-634. (PMID: 31384033)
J Neurosci. 2017 Feb 1;37(5):1367-1373. (PMID: 28073940)
Cortex. 2008 Feb;44(2):107-8. (PMID: 18387539)
Phys Life Rev. 2024 Mar;48:113-131. (PMID: 38217888)
Curr Biol. 2024 Nov 4;34(21):5073-5082.e5. (PMID: 39419033)
Prog Brain Res. 2006;155:23-36. (PMID: 17027377)
Comput Biomed Res. 1996 Jun;29(3):162-73. (PMID: 8812068)
Cortex. 2002 Jun;38(3):357-78. (PMID: 12146661)
Nat Commun. 2022 Oct 31;13(1):6508. (PMID: 36316315)
Trends Cogn Sci. 2020 Jun;24(6):451-465. (PMID: 32340798)
Neuroimage. 2015 Jan 15;105:215-28. (PMID: 25451480)
J Neurosci. 2024 May 29;44(22):. (PMID: 38627090)
Front Neuroinform. 2016 Jul 22;10:27. (PMID: 27499741)
Nat Neurosci. 2009 May;12(5):535-40. (PMID: 19396166)
J Neurosci. 2024 May 1;44(18):. (PMID: 38527809)
Psychol Bull. 2003 Sep;129(5):723-46. (PMID: 12956541)
Brain Struct Funct. 2022 Mar;227(2):697-708. (PMID: 33885966)
Cortex. 2020 Jun;127:371-387. (PMID: 32289581)
Trends Cogn Sci. 2014 Apr;18(4):203-10. (PMID: 24593982)
Neuron. 2007 Oct 25;56(2):366-83. (PMID: 17964252)
Br J Psychol. 1973 Feb;64(1):17-24. (PMID: 4742442)
Nat Rev Neurosci. 2023 Mar;24(3):173-189. (PMID: 36456807)
Brain Sci. 2020 Jan 21;10(2):. (PMID: 31972965)
J Neurosci. 2019 Jan 23;39(4):705-717. (PMID: 30504281)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
Cereb Cortex. 2017 Jan 1;27(1):373-385. (PMID: 26464475)
Elife. 2019 Jul 08;8:. (PMID: 31282861)
Nat Commun. 2022 Oct 18;13(1):5864. (PMID: 36257949)
Hum Brain Mapp. 2023 Jul;44(10):3954-3971. (PMID: 37219891)
Contributed Indexing: Keywords: EEG–MRI fusion; category selectivity; mental imagery
Entry Date(s): Date Created: 20250417 Latest Revision: 20250709
Update Code: 20250709
PubMed Central ID: PMC12003044
DOI: 10.1093/nc/niaf006
PMID: 40241880
Datenbank: MEDLINE
Beschreibung
Abstract:Visual imagery is a dynamic process recruiting a network of brain regions. We used electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) fusion to investigate the dynamics of category selective imagery in medial parietal cortex (MPC), ventral temporal cortex (VTC), and primary visual cortex (V1). Subjects attended separate EEG and fMRI sessions where they created mental images of personally familiar people and place stimuli. The fMRI contrast comparing people and place imagery replicated previous findings of category-selectivity in the medial parietal cortex. In addition, greater activity for places was found in the ventral and lateral place memory areas, the frontal eye fields, the inferior temporal sulcus, and the intraparietal sulcus. In contrast, greater activity for people was found in the fusiform face area and the right posterior superior temporal sulcus. Using multivariate decoding analysis in fMRI, we could decode individual stimuli within the preferred category in VTC. A more complex pattern emerged in MPC, which represented information that was not restricted to the preferred category. We were also able to decode category and individual stimuli in the EEG data. EEG-fMRI fusion indicated similar timings in MPC and VTC activity during imagery. However, in the VTC, fusion was higher in place selective regions during an early time window, and higher in face selective regions in a later time window. In contrast, fusion correlations in V1 occurred later during the imagery period, possibly reflecting the top-down progression of mental imagery from category-selective regions to primary visual cortex.<br /> (© The Author(s) 2025. Published by Oxford University Press.)
ISSN:2057-2107
DOI:10.1093/nc/niaf006