Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system.
Uloženo v:
| Název: | Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system. |
|---|---|
| Autoři: | Maximova OA; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Anzick SL; Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America., Sturdevant DE; Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America., Bennett RS; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Faucette LJ; Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., St Claire M; Bioqual, Inc., Rockville, Maryland, United States of America., Whitehead SS; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Kanakabandi K; Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America., Sheng ZM; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Xiao Y; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Kash JC; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Taubenberger JK; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America., Martens C; Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America., Cohen JI; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America. |
| Zdroj: | PLoS pathogens [PLoS Pathog] 2025 Jan 22; Vol. 21 (1), pp. e1012530. Date of Electronic Publication: 2025 Jan 22 (Print Publication: 2025). |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: San Francisco, CA : Public Library of Science, c2005- |
| Výrazy ze slovníku MeSH: | La Crosse virus*/immunology , Central Nervous System*/virology , Central Nervous System*/immunology , Encephalitis, California*/immunology , Encephalitis, California*/virology , Encephalitis, California*/pathology, Animals ; Virus Replication ; Neurons/virology ; Macaca mulatta |
| Abstrakt: | Competing Interests: The authors have declared that no competing interests exist. Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover. Since it is not possible to study the human CNS throughout the course of viral infection at the cellular level, here we analyzed a non-lethal viral infection in the CNS of nonhuman primates (NHPs). We inoculated NHPs intracerebrally with a high dose of La Crosse virus (LACV), a bunyavirus that can infect neurons and cause encephalitis primarily in children, but with a very low (≤ 1%) mortality rate. To profile the CNS response to LACV infection, we used an integrative approach that was based on comprehensive analyses of (i) spatiotemporal dynamics of virus replication, (ii) identification of types of infected neurons, (iii) spatiotemporal transcriptomics, and (iv) morphological and functional changes in CNS intrinsic and extrinsic cells. We identified the location, timing, and functional repertoire of optimal transcriptional and translational regulation of the primate CNS in response to virus infection of neurons. These CNS responses involved a well-coordinated spatiotemporal interplay between astrocytes, lymphocytes, microglia, and CNS-border macrophages. Our findings suggest a multifaceted program governing an optimal CNS response to virus infection with specific events coordinated in space and time. This allowed the CNS to successfully control the infection by rapidly clearing the virus from infected neurons, mitigate damage to neurophysiology, activate and terminate immune responses in a timely manner, resolve inflammation, restore homeostasis, and initiate tissue repair. An increased understanding of these processes may provide new therapeutic opportunities to improve outcomes of viral CNS diseases in humans. (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.) |
| References: | Antioxidants (Basel). 2022 May 08;11(5):. (PMID: 35624787) Prog Clin Biol Res. 1983;123:179-86. (PMID: 6867033) Alzheimers Dement. 2015 Jan;11(1):40-50.e1-2. (PMID: 24530025) Annu Rev Pathol. 2021 Jan 24;16:23-50. (PMID: 32289233) Immunity. 2017 Jun 20;46(6):891-909. (PMID: 28636958) Trends Immunol. 2020 Sep;41(9):758-770. (PMID: 32819810) J Neuropathol Exp Neurol. 2020 Aug 1;79(8):823-842. (PMID: 32647884) Virology. 2003 Nov 10;316(1):55-63. (PMID: 14599790) Nat Commun. 2023 May 18;14(1):2836. (PMID: 37202395) J Virol. 2012 Oct;86(20):11223-30. (PMID: 22875966) Semin Immunopathol. 2019 Nov;41(6):711-726. (PMID: 31732775) Cell. 2017 Jun 15;169(7):1276-1290.e17. (PMID: 28602351) Microbiol Spectr. 2016 Jun;4(3):. (PMID: 27337465) Brain Pathol. 2011 Nov;21(6):652-60. (PMID: 21418368) Int J Inflam. 2010 Aug 09;2010:151097. (PMID: 21152121) Front Immunol. 2020 Jul 23;11:1467. (PMID: 32849503) Cell. 2018 May 17;173(5):1073-1081. (PMID: 29775591) J Child Neurol. 1999 Jan;14(1):1-14. (PMID: 10025535) Infect Dis Clin North Am. 1998 Mar;12(1):83-93. (PMID: 9494831) Neurohospitalist. 2022 Jul;12(3):587-588. (PMID: 35755222) Front Neuroanat. 2014 Mar 26;8:16. (PMID: 24723858) PLoS Negl Trop Dis. 2016 Sep 12;10(9):e0004980. (PMID: 27617450) Lab Invest. 1984 Apr;50(4):447-55. (PMID: 6708454) Genome Biol. 2014;15(12):550. (PMID: 25516281) Virol J. 2007 May 08;4:41. (PMID: 17488515) Virol J. 2008 Feb 11;5:25. (PMID: 18267012) JAMA Neurol. 2015 Feb;72(2):143-4. (PMID: 25485794) Front Immunol. 2019 Mar 26;10:586. (PMID: 30984175) Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198. (PMID: 31066453) Am J Trop Med Hyg. 2021 Jul 19;105(3):807-812. (PMID: 34280142) J Virol. 2008 Jun;82(11):5255-68. (PMID: 18353947) Sci Rep. 2017 Jun 23;7(1):4121. (PMID: 28646201) J Neurosci. 2012 May 2;32(18):6391-410. (PMID: 22553043) Emerg Infect Dis. 2017 Dec;23(12):2075-2077. (PMID: 29148398) J Virol. 2004 Nov;78(22):12497-507. (PMID: 15507637) Neuron. 2022 Nov 2;110(21):3497-3512. (PMID: 36327896) Acta Neuropathol. 2015 Aug;130(2):233-45. (PMID: 25956408) J Clin Invest. 2007 Feb;117(2):438-47. (PMID: 17256058) J Histochem Cytochem. 2009 Oct;57(10):973-89. (PMID: 19581627) Neural Regen Res. 2023 Jan;18(1):131-132. (PMID: 35799529) Nat Rev Neurosci. 2015 May;16(5):249-63. (PMID: 25891508) J Comp Neurol. 2013 Dec 15;521(18):4205-35. (PMID: 23840034) Glia. 2013 Apr;61(4):453-65. (PMID: 23322421) Pediatrics. 1997 Feb;99(2):261-7. (PMID: 9024460) Ann Neurol. 2006 Sep;60(3):286-300. (PMID: 16983682) J Exp Med. 2015 Aug 24;212(9):1342-3. (PMID: 26304982) J Neurosci. 2009 Sep 16;29(37):11511-22. (PMID: 19759299) Handb Clin Neurol. 2014;123:225-47. (PMID: 25015488) Nat Rev Immunol. 2003 Jun;3(6):493-502. (PMID: 12776209) Comp Med. 2020 Dec 1;70(6):526-531. (PMID: 33046181) EMBO J. 2014 Jan 7;33(1):7-22. (PMID: 24357543) Muscle Nerve. 2005 Sep;32(3):261-79. (PMID: 15806550) Curr Neurol Neurosci Rep. 2021 May 26;21(7):37. (PMID: 34037866) Br J Pharmacol. 2008 Nov;155(5):623-40. (PMID: 18794892) Mediators Inflamm. 2013;2013:320519. (PMID: 24023412) Vaccine. 2014 May 30;32(26):3187-97. (PMID: 24736001) J Neuropathol Exp Neurol. 2008 Dec;67(12):1113-21. (PMID: 19018243) Annu Rev Immunol. 2019 Apr 26;37:73-95. (PMID: 31026414) Elife. 2021 Feb 18;10:. (PMID: 33599611) Cell Host Microbe. 2013 Apr 17;13(4):379-93. (PMID: 23601101) Nat Commun. 2021 Jun 25;12(1):3958. (PMID: 34172753) Annu Rev Neurosci. 2008;31:195-218. (PMID: 18558853) Arch Virol. 1983;75(1-2):71-86. (PMID: 6299247) Anat Rec A Discov Mol Cell Evol Biol. 2003 Feb;270(2):137-51. (PMID: 12524689) Antioxid Redox Signal. 2011 Jan 15;14(2):261-73. (PMID: 20524846) J Neuroinflammation. 2017 Mar 24;14(1):62. (PMID: 28340587) Immun Ageing. 2012 Nov 14;9(1):25. (PMID: 23151307) EMBO Rep. 2021 Dec 6;22(12):e53085. (PMID: 34779563) Cell. 2018 Feb 22;172(5):952-965.e18. (PMID: 29474921) Biochem Soc Trans. 2023 Feb 27;51(1):259-274. (PMID: 36606670) Pediatr Neurol. 1995 May;12(4):346-9. (PMID: 7546008) Clin Infect Dis. 2023 Feb 8;76(3):e1114-e1122. (PMID: 35607778) Front Immunol. 2022 Jan 19;12:827815. (PMID: 35126383) Annu Rev Virol. 2018 Sep 29;5(1):255-272. (PMID: 30265628) Dev Neurobiol. 2017 Jul;77(7):810-829. (PMID: 27706924) |
| Entry Date(s): | Date Created: 20250122 Date Completed: 20250503 Latest Revision: 20250503 |
| Update Code: | 20250503 |
| PubMed Central ID: | PMC11753669 |
| DOI: | 10.1371/journal.ppat.1012530 |
| PMID: | 39841753 |
| Databáze: | MEDLINE |
| Abstrakt: | Competing Interests: The authors have declared that no competing interests exist.<br />Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover. Since it is not possible to study the human CNS throughout the course of viral infection at the cellular level, here we analyzed a non-lethal viral infection in the CNS of nonhuman primates (NHPs). We inoculated NHPs intracerebrally with a high dose of La Crosse virus (LACV), a bunyavirus that can infect neurons and cause encephalitis primarily in children, but with a very low (≤ 1%) mortality rate. To profile the CNS response to LACV infection, we used an integrative approach that was based on comprehensive analyses of (i) spatiotemporal dynamics of virus replication, (ii) identification of types of infected neurons, (iii) spatiotemporal transcriptomics, and (iv) morphological and functional changes in CNS intrinsic and extrinsic cells. We identified the location, timing, and functional repertoire of optimal transcriptional and translational regulation of the primate CNS in response to virus infection of neurons. These CNS responses involved a well-coordinated spatiotemporal interplay between astrocytes, lymphocytes, microglia, and CNS-border macrophages. Our findings suggest a multifaceted program governing an optimal CNS response to virus infection with specific events coordinated in space and time. This allowed the CNS to successfully control the infection by rapidly clearing the virus from infected neurons, mitigate damage to neurophysiology, activate and terminate immune responses in a timely manner, resolve inflammation, restore homeostasis, and initiate tissue repair. An increased understanding of these processes may provide new therapeutic opportunities to improve outcomes of viral CNS diseases in humans.<br /> (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.) |
|---|---|
| ISSN: | 1553-7374 |
| DOI: | 10.1371/journal.ppat.1012530 |
Full Text Finder
Nájsť tento článok vo Web of Science