Harnessing Simple Animal Models to Decode Sleep Mysteries.

Uložené v:
Podrobná bibliografia
Názov: Harnessing Simple Animal Models to Decode Sleep Mysteries.
Autori: Pandi-Perumal SR; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India.; Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.; Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India., Saravanan KM; B Aatral Biosciences Private Limited, Bangalore, 560091, Karnataka, India., Paul S; Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA., Chidambaram SB; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India. babupublications@gmail.com.; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India. babupublications@gmail.com.
Zdroj: Molecular biotechnology [Mol Biotechnol] 2025 Nov; Vol. 67 (11), pp. 4078-4094. Date of Electronic Publication: 2024 Nov 23.
Spôsob vydávania: Journal Article; Review
Jazyk: English
Informácie o časopise: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
Imprint Name(s): Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
Výrazy zo slovníka MeSH: Sleep*/physiology , Sleep*/genetics , Models, Animal*, Animals ; Humans ; Caenorhabditis elegans/physiology ; Circadian Rhythm/physiology ; Zebrafish/physiology ; Drosophila melanogaster/physiology ; Drosophila melanogaster/genetics ; Disease Models, Animal
Abstrakt: Competing Interests: Declarations. Conflict of interests: The authors declare that they have no known conflict or competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Ethical Approval: This study does not contain any work involving animals or human participants performed by any of the authors. Hence, no IRB approval was necessary for this work.
Whether it involves human subjects or non-human animals, basic, translational, or clinical sleep research poses significant ethical challenges for researchers and ethical committees alike. Sleep research greatly benefits from using diverse animal models, each offering unique insights into sleep control mechanisms. The fruit fly (Drosophila melanogaster) is a superior genetic model due to its quick generation period, large progenies, and rich genetic tools. Its well-characterized genome and ability to respond to hypnotics and stimulants make it an effective tool for studying sleep genetics and physiological foundations. The nematode (Caenorhabditis elegans) has a simpler neural organization and transparent body, allowing researchers to explore molecular underpinnings of sleep control. Vertebrate models, like zebrafish (Danio rerio), provide insights into circadian rhythm regulation, memory consolidation, and drug effects on sleep. Invertebrate models, like California sea hare (Aplysia californica) and Upside-down jellyfish (Cassiopea xamachana), have simpler nervous systems and behave similarly to humans, allowing for the examination of sleep principles without logistical and ethical challenges. Combining vertebrate and invertebrate animal models offers a comprehensive approach to studying sleep, improving our understanding of sleep regulation and potentially leading to new drug discovery processes for sleep disorders and related illnesses.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ono, D., Weaver, D. R., Hastings, M. H., Honma, K.-I., Honma, S., & Silver, R. (2024). The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. Journal of Biological Rhythms, 39(2), 135–165. https://doi.org/10.1177/07487304231225706. (PMID: 10.1177/07487304231225706383666167615910)
Pandi-Perumal, S. R., Srinivasan, V., Spence, D. W., & Cardinali, D. P. (2007). Role of the melatonin system in the control of sleep: Therapeutic implications. CNS Drugs, 21(12), 995–1018. https://doi.org/10.2165/00023210-200721120-00004. (PMID: 10.2165/00023210-200721120-0000418020480)
Pandi-Perumal, S. R., Cardinali, D. P., Zaki, N. F. W., Karthikeyan, R., Spence, D. W., Reiter, R. J., & Brown, G. M. (2022). Timing is everything: Circadian rhythms and their role in the control of sleep. Frontiers in Neuroendocrinology, 66, 100978. https://doi.org/10.1016/j.yfrne.2022.100978. (PMID: 10.1016/j.yfrne.2022.10097835033557)
Borbély, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195–204. (PMID: 7185792)
Borbély, A. (2022). The two-process model of sleep regulation: Beginnings and outlook. Journal of Sleep Research, 31(4), e13598. https://doi.org/10.1111/jsr.13598. (PMID: 10.1111/jsr.13598355027069540767)
Klosen, P. (2024). Thirty-seven years of MT1 and MT2 melatonin receptor localization in the brain: Past and future challenges. Journal of Pineal Research, 76(3), e12955. https://doi.org/10.1111/jpi.12955. (PMID: 10.1111/jpi.1295538606787)
Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). ISOLATION OF MELATONIN, THE PINEAL GLAND FACTOR THAT LIGHTENS MELANOCYTES1. Journal of the American Chemical Society, 80(10), 2587–2587. https://doi.org/10.1021/ja01543a060. (PMID: 10.1021/ja01543a060)
Manchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., … Reiter, R. J. (2015). Melatonin: an ancient molecule that makes oxygen metabolically tolerable. Journal of Pineal Research, 59(4), 403–419. https://doi.org/10.1111/jpi.12267.
Pandi-Perumal, S. R., Srinivasan, V., Maestroni, G. J. M., Cardinali, D. P., Poeggeler, B., & Hardeland, R. (2006). Melatonin: Nature’s most versatile biological signal? The FEBS journal, 273(13), 2813–2838. https://doi.org/10.1111/j.1742-4658.2006.05322.x. (PMID: 10.1111/j.1742-4658.2006.05322.x16817850)
Claustrat, B., Brun, J., & Chazot, G. (2005). The basic physiology and pathophysiology of melatonin. Sleep Medicine Reviews, 9(1), 11–24. https://doi.org/10.1016/j.smrv.2004.08.001. (PMID: 10.1016/j.smrv.2004.08.00115649735)
Wurtman, R. J. (1980). The pineal as a neuroendocrine transducer. Hospital Practice, 15(1), 82–86, 91–92. https://doi.org/10.1080/21548331.1980.11946542.
Zisapel, N. (2001). Circadian rhythm sleep disorders: Pathophysiology and potential approaches to management. CNS Drugs, 15(4), 311–328. https://doi.org/10.2165/00023210-200115040-00005. (PMID: 10.2165/00023210-200115040-0000511463135)
Dijk, D. J., & Cajochen, C. (1997). Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG. Journal of Biological Rhythms, 12(6), 627–635. https://doi.org/10.1177/074873049701200618. (PMID: 10.1177/0748730497012006189406038)
Toth, L. A., & Bhargava, P. (2013). Animal models of sleep disorders. Comparative Medicine, 63(2), 91–104. (PMID: 235824163625050)
Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Quan, S. F., … Vaughn, B. V. (2017). AASM Scoring Manual Updates for 2017 (Version 2.4). Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine, 13(5), 665–666. https://doi.org/10.5664/jcsm.6576.
Monti, J. M. (1981). Sleep laboratory and clinical studies of the effects of triazolam, flunitrazepam and flurazepam in insomniac patients. Methods and Findings in Experimental and Clinical Pharmacology, 3(5), 303–326. (PMID: 6120270)
Monti, J. M., Hawkins, M., Jantos, H., D’Angelo, L., & Fernández, M. (1988). Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology (Berl), 95(3), 395–400. https://doi.org/10.1007/BF00181955. (PMID: 10.1007/BF001819553137628)
Siegel, J. M. (2008). Do all animals sleep? Trends in Neurosciences, 31(4), 208–213. https://doi.org/10.1016/j.tins.2008.02.001. (PMID: 10.1016/j.tins.2008.02.001183285778765194)
Liechti, F., Witvliet, W., Weber, R., & Bächler, E. (2013). First evidence of a 200-day non-stop flight in a bird. Nature Communications, 4, 2554. https://doi.org/10.1038/ncomms3554. (PMID: 10.1038/ncomms355424104955)
Lyamin, O., Pryaslova, J., Lance, V., & Siegel, J. (2005). Animal behaviour: Continuous activity in cetaceans after birth. Nature, 435(7046), 1177. https://doi.org/10.1038/4351177a. (PMID: 10.1038/4351177a159885138790654)
Jehan, S., Masters-Isarilov, A., Salifu, I., Zizi, F., Jean-Louis, G., Pandi-Perumal, S. R., Gupta, R., Brzezinski, A., & McFarlane, S. I. (2015). Sleep Disorders in Postmenopausal Women. Journal of Sleep Disorders & Therapy, 4(5), 212.
Jehan, S., Auguste, E., Zizi, F., Pandi-Perumal, S. R., Gupta, R., Attarian, H., Jean-Louis, G., & McFarlane, S. I. (2016). Obstructive Sleep Apnea: Women’s Perspective. Journal of Sleep Medicine and Disorders, 3(6), 1064. (PMID: 282396855323064)
Jehan, S., Auguste, E., Hussain, M., Pandi-Perumal, S. R., Brzezinski, A., Gupta, R., Attarian, H., Jean-Louis, G., & McFarlane, S. I. (2016). Sleep and Premenstrual Syndrome. Journal of Sleep Medicine and Disorders, 3(5), 1061. (PMID: 282396845323065)
Gupta, R., Dhyani, M., Kendzerska, T., Pandi-Perumal, S. R., BaHammam, A. S., Srivanitchapoom, P., Pandey, S., & Hallett, M. (2016). Restless legs syndrome and pregnancy: Prevalence, possible pathophysiological mechanisms and treatment. Acta Neurologica Scandinavica, 133(5), 320–329. https://doi.org/10.1111/ane.12520. (PMID: 10.1111/ane.1252026482928)
Bukhtiyarova, O., Chauvette, S., Seigneur, J., & Timofeev, I. (2022). Brain states in freely behaving marmosets. Sleep, 45(8), zsac106. https://doi.org/10.1093/sleep/zsac106. (PMID: 10.1093/sleep/zsac106355769619366652)
Edgar, D. M., Dement, W. C., & Fuller, C. A. (1993). Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 13(3), 1065–1079. https://doi.org/10.1523/JNEUROSCI.13-03-01065.1993. (PMID: 10.1523/JNEUROSCI.13-03-01065.19938441003)
Hsieh, K.-C., Robinson, E. L., & Fuller, C. A. (2008). Sleep Architecture in Unrestrained Rhesus Monkeys (Macaca mulatta) Synchronized to 24-Hour Light-Dark Cycles. Sleep, 31(9), 1239. (PMID: 187886492542979)
Le Van, Q. M., Muller, L. E., Telenczuk, B., Halgren, E., Cash, S., Hatsopoulos, N. G., Dehghani, N., & Destexhe, A. (2016). High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle. Proceedings of the National Academy of Sciences of the United States of America, 113(33), 9363–9368. https://doi.org/10.1073/pnas.1523583113. (PMID: 10.1073/pnas.1523583113)
Vuong, J. S., Garrett, J. J., Connolly, M. J., York, A. R., Gross, R. E., & Devergnas, A. (2020). Head mounted telemetry system for seizures monitoring and sleep scoring on non-human primate. Journal of Neuroscience Methods, 346, 108915. https://doi.org/10.1016/j.jneumeth.2020.108915. (PMID: 10.1016/j.jneumeth.2020.108915328226947606797)
Cederberg, R., Nishino, S., Dement, W. C., & Mignot, E. (1998). Breeding history of the Stanford colony of narcoleptic dogs. The Veterinary Record, 142(2), 31–36. https://doi.org/10.1136/vr.142.2.31. (PMID: 10.1136/vr.142.2.319481825)
Baker, T. L., Foutz, A. S., McNerney, V., Mitler, M. M., & Dement, W. C. (1982). Canine model of narcolepsy: Genetic and developmental determinants. Experimental Neurology, 75(3), 729–742. https://doi.org/10.1016/0014-4886(82)90038-3. (PMID: 10.1016/0014-4886(82)90038-37199479)
Nishino, S., & Mignot, E. (1997). Pharmacological aspects of human and canine narcolepsy. Progress in Neurobiology, 52(1), 27–78. https://doi.org/10.1016/s0301-0082(96)00070-6. (PMID: 10.1016/s0301-0082(96)00070-69185233)
Walker, J. M., & Berger, R. J. (1972). Sleep in the domestic pigeon (Columba livia). Behavioral Biology, 7(2), 195–203. https://doi.org/10.1016/s0091-6773(72)80199-8. (PMID: 10.1016/s0091-6773(72)80199-84339457)
Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H., & Benca, R. M. (2008). Sleep deprivation in the pigeon using the Disk-Over-Water method. Physiology & Behavior, 93(1–2), 50–58. https://doi.org/10.1016/j.physbeh.2007.07.012. (PMID: 10.1016/j.physbeh.2007.07.012)
Low, P. S., Shank, S. S., Sejnowski, T. J., & Margoliash, D. (2008). Mammalian-like features of sleep structure in zebra finches. Proceedings of the National Academy of Sciences of the United States of America, 105(26), 9081–9086. https://doi.org/10.1073/pnas.0703452105. (PMID: 10.1073/pnas.0703452105185797762440357)
Yeganegi, H., & Ondracek, J. M. (2023). Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Scientific Reports, 13(1), 8607. https://doi.org/10.1038/s41598-023-35160-1. (PMID: 10.1038/s41598-023-35160-13724492710224955)
Rechtschaffen, A., & Bergmann, B. M. (1995). Sleep deprivation in the rat by the disk-over-water method. Behavioural Brain Research, 69(1–2), 55–63. https://doi.org/10.1016/0166-4328(95)00020-t. (PMID: 10.1016/0166-4328(95)00020-t7546318)
Rechtschaffen, A., & Bergmann, B. M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep, 25(1), 18–24. https://doi.org/10.1093/sleep/25.1.18. (PMID: 10.1093/sleep/25.1.1811833856)
Neculicioiu, V. S., Colosi, I. A., Costache, C., Toc, D. A., Sevastre-Berghian, A., Colosi, H. A., & Clichici, S. (2023). Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review. Antioxidants (Basel, Switzerland), 12(8), 1600. https://doi.org/10.3390/antiox12081600. (PMID: 10.3390/antiox1208160037627596)
Kostiew, K. N., Tuli, D., Coborn, J. E., Sinton, C. M., & Teske, J. A. (2024). Behavioral phenotyping based on physical inactivity can predict sleep in female rats before, during, and after sleep disruption. Journal of Neuroscience Methods, 402, 110030. https://doi.org/10.1016/j.jneumeth.2023.110030. (PMID: 10.1016/j.jneumeth.2023.11003038042303)
Huffman, D. M., Ajwad, A. A., Agarwal, A., Lhamon, M. E., Donohue, K., O’Hara, B. F., & Sunderam, S. (2024). Selective REM sleep restriction in mice using a device designed for tunable somatosensory stimulation. Journal of Neuroscience Methods, 404, 110063. https://doi.org/10.1016/j.jneumeth.2024.110063. (PMID: 10.1016/j.jneumeth.2024.1100633830183310922658)
Palchykova, S., Deboer, T., & Tobler, I. (2003). Seasonal aspects of sleep in the Djungarian hamster. BMC neuroscience, 4, 9. https://doi.org/10.1186/1471-2202-4-9. (PMID: 10.1186/1471-2202-4-912756056161816)
Deboer, T., Franken, P., & Tobler, I. (1994). Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 174(2), 145–155. https://doi.org/10.1007/BF00193782. (PMID: 10.1007/BF001937828145187)
Yano, H., Ueno, Y., Higashiyama, M., Akhter, F., Katagiri, A., Toyoda, H., Uzawa, N., Yoshida, A., & Kato, T. (2022). After-effects of acute footshock stress on sleep states and rhythmic masticatory muscle activity during sleep in guinea pigs. Odontology, 110(3), 476–481. https://doi.org/10.1007/s10266-021-00679-0. (PMID: 10.1007/s10266-021-00679-035000009)
Tobler, I., & Franken, P. (1993). Sleep homeostasis in the guinea pig: Similar response to sleep deprivation in the light and dark period. Neuroscience Letters, 164(1–2), 105–108. https://doi.org/10.1016/0304-3940(93)90868-l. (PMID: 10.1016/0304-3940(93)90868-l8152583)
Gvilia, I. D., Kochladze, M. Z., Darchia, N. D., & Oniani, T. N. (2000). Sleep-wakefulness cycle of a guinea-pig as a model of a biosensor. Kybernetes, 29(2), 234–238. https://doi.org/10.1108/03684920010312830. (PMID: 10.1108/03684920010312830)
Xi, M., & Chase, M. H. (2009). The impact of age on the hypnotic effects of eszopiclone and zolpidem in the guinea pig. Psychopharmacology (Berl), 205(1), 107–117. https://doi.org/10.1007/s00213-009-1520-9. (PMID: 10.1007/s00213-009-1520-919343329)
Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., … Mignot, E. (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98(3), 365–376. https://doi.org/10.1016/s0092-8674(00)81965-0.
Hungs, M., Fan, J., Lin, L., Lin, X., Maki, R. A., & Mignot, E. (2001). Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Research, 11(4), 531–539. https://doi.org/10.1101/gr.gr-1610r. (PMID: 10.1101/gr.gr-1610r11282968)
Kurimoto, E., Ishikawa, T., Joyal, A. A., & Scammell, T. E. (2023). 0045 Characterization of a novel narcolepsy mouse model with conditional ablation of the orexin neurons. Sleep, 46(Supplement_1), A21. https://doi.org/10.1093/sleep/zsad077.0045.
Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., Richardson, J. A., Williams, S. C., Xiong, Y., Kisanuki, Y., & Fitch, T. E. (1999). Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell, 98(4), 437–451. https://doi.org/10.1016/s0092-8674(00)81973-x. (PMID: 10.1016/s0092-8674(00)81973-x10481909)
Hara, J., Beuckmann, C. T., Nambu, T., Willie, J. T., Chemelli, R. M., Sinton, C. M., & Sakurai, T. (2001). Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron, 30(2), 345–354. https://doi.org/10.1016/s0896-6273(01)00293-8. (PMID: 10.1016/s0896-6273(01)00293-811394998)
Mochizuki, T., Crocker, A., McCormack, S., Yanagisawa, M., Sakurai, T., & Scammell, T. E. (2004). Behavioral state instability in orexin knock-out mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(28), 6291–6300. https://doi.org/10.1523/JNEUROSCI.0586-04.2004. (PMID: 10.1523/JNEUROSCI.0586-04.200415254084)
Scammell, T. E., Willie, J. T., Guilleminault, C., Siegel, J. M., & International Working Group on Rodent Models of Narcolepsy. (2009). A consensus definition of cataplexy in mouse models of narcolepsy. Sleep, 32(1), 111–116. (PMID: 10.5665/sleep/32.1.111)
Chen, L., Brown, R. E., McKenna, J. T., & McCarley, R. W. (2009). Animal Models of Narcolepsy. CNS & neurological disorders drug targets, 8(4), 296. https://doi.org/10.2174/187152709788921717. (PMID: 10.2174/187152709788921717)
Alvente, S., Matteoli, G., Miglioranza, E., Zoccoli, G., & Bastianini, S. (2023). How to study sleep apneas in mouse models of human pathology. Journal of Neuroscience Methods, 395, 109923. https://doi.org/10.1016/j.jneumeth.2023.109923. (PMID: 10.1016/j.jneumeth.2023.10992337459897)
Matteoli, G., Alvente, S., Bastianini, S., Berteotti, C., Ciani, E., Cinelli, E., … Zoccoli, G. (2024). Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. Journal of Sleep Research, e14295. https://doi.org/10.1111/jsr.14295.
Davis, E. M., & O’Donnell, C. P. (2013). Rodent models of sleep apnea. Respiratory Physiology & Neurobiology, 188(3), 355–361. https://doi.org/10.1016/j.resp.2013.05.022. (PMID: 10.1016/j.resp.2013.05.022)
Gauda, E. B. (2009). Introduction: Sleep-disordered breathing across the life span: Exploring a human disorder using animal models. ILAR journal, 50(3), 243–247. https://doi.org/10.1093/ilar.50.3.243. (PMID: 10.1093/ilar.50.3.24319506311)
Niinikoski, I., Himanen, S.-L., Tenhunen, M., Aromaa, M., Lilja-Maula, L., & Rajamäki, M. M. (2024). Evaluation of risk factors for sleep-disordered breathing in dogs. Journal of Veterinary Internal Medicine, 38(2), 1135–1145. https://doi.org/10.1111/jvim.17019. (PMID: 10.1111/jvim.170193835805110937515)
Vaarno, J., Myller, J., Bachour, A., Koskinen, H., Bäck, L., Klockars, T., & Koskinen, A. (2020). A detection dog for obstructive sleep apnea: could it work in diagnostics? Sleep & Breathing = Schlaf & Atmung, 24(4), 1653–1656. https://doi.org/10.1007/s11325-020-02113-1.
Kimoff, R. J., Makino, H., Horner, R. L., Kozar, L. F., Lue, F., Slutsky, A. S., & Phillipson, E. A. (1994). Canine model of obstructive sleep apnea: model description and preliminary application. Journal of Applied Physiology (Bethesda, Md.: 1985), 76(4), 1810–1817. https://doi.org/10.1152/jappl.1994.76.4.1810.
Hendricks, J. C., Kline, L. R., Kovalski, R. J., O’Brien, J. A., Morrison, A. R., & Pack, A. I. (1987). The English bulldog: a natural model of sleep-disordered breathing. Journal of Applied Physiology (Bethesda, Md.: 1985), 63(4), 1344–1350. https://doi.org/10.1152/jappl.1987.63.4.1344.
Zothansiama, & Solanki, G. (2016). Sleeping Site Selection in Wild Stump-Tailed Macaques. Current Science. Retrieved from https://www.semanticscholar.org/paper/Sleeping-Site-Selection-in-Wild-Stump-Tailed-Zothansiama-Solanki/d34fac11c2bbcb5773958804db0a2594a705a616.
Feilen, K. L., & Marshall, A. J. (2014). Sleeping site selection by proboscis monkeys (Nasalis larvatus) in West Kalimantan. Indonesia. American Journal of Primatology, 76(12), 1127–1139. https://doi.org/10.1002/ajp.22298. (PMID: 10.1002/ajp.2229824810395)
Anderson, J. R. (1998). Sleep, sleeping sites, and sleep-related activities: Awakening to their significance. American Journal of Primatology, 46(1), 63–75. https://doi.org/10.1002/(SICI)1098-2345(1998)46:1%3c63::AID-AJP5%3e3.0.CO;2-T. (PMID: 10.1002/(SICI)1098-2345(1998)46:1<63::AID-AJP5>3.0.CO;2-T9730213)
American Journal of Primatology | Primates Journal | Wiley Online Library. (n.d.). Retrieved June 21, 2024, from https://onlinelibrary.wiley.com/doi/abs/ https://doi.org/10.1002/ajp.1350030104.
Concepts and Mechanisms of Generalized Central Nervous System Arousal - Pfaff - 2008 - Annals of the New York Academy of Sciences - Wiley Online Library. (n.d.). Retrieved June 21, 2024, from https://nyaspubs.onlinelibrary.wiley.com/doi/abs/ https://doi.org/10.1196/annals.1417.019.
Sleep timing and the circadian clock in mammals: Past, present and the road ahead - ScienceDirect. (n.d.). Retrieved June 21, 2024, from https://www.sciencedirect.com/science/article/abs/pii/S108495212100149X.
Mistlberger, R. E. (2005). Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Research Reviews, 49(3), 429–454. https://doi.org/10.1016/j.brainresrev.2005.01.005. (PMID: 10.1016/j.brainresrev.2005.01.00516269313)
Borbély, A. A. (1982). Sleep Regulation: Circadian Rhythm and Homeostasis. In D. Ganten & D. Pfaff (Eds.), Sleep (pp. 83–103). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-68333-6&#95;3.
Papanikolopoulou, K., Mudher, A., & Skoulakis, E. (2019). An assessment of the translational relevance of Drosophila in drug discovery. Expert Opinion on Drug Discovery, 14(3), 303–313. https://doi.org/10.1080/17460441.2019.1569624. (PMID: 10.1080/17460441.2019.156962430664368)
Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster. Genome Research, 11(6), 1114–1125. https://doi.org/10.1101/gr.169101. (PMID: 10.1101/gr.16910111381037311089)
Kanca, O., Zirin, J., Garcia-Marques, J., Knight, S. M., Yang-Zhou, D., Amador, G., … Bellen, H. J. (2019). An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife, 8, e51539. https://doi.org/10.7554/eLife.51539.
Kanca, O., Zirin, J., Hu, Y., Tepe, B., Dutta, D., Lin, W.-W., … Bellen, H. J. (2022). An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. eLife, 11, e76077. https://doi.org/10.7554/eLife.76077.
Zirin, J., Bosch, J., Viswanatha, R., Mohr, S. E., & Perrimon, N. (2022). State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genetics, 38(5), 437–453. https://doi.org/10.1016/j.tig.2021.11.006. (PMID: 10.1016/j.tig.2021.11.00634933779)
Atsoniou, K., Giannopoulou, E., Georganta, E.-M., & Skoulakis, E. M. C. (2024). Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells, 13(8), 721. https://doi.org/10.3390/cells13080721. (PMID: 10.3390/cells130807213866733511048932)
Ziehm, M., Piper, M. D., & Thornton, J. M. (n.d.). Analysing variation in Drosophila aging across independent experimental studies: a meta‐analysis of survival data. https://doi.org/10.1111/acel.12123.
Sex Limited Inheritance in Drosophila | Science. (n.d.). Retrieved June 21, 2024, from https://www.science.org/doi/abs/ https://doi.org/10.1126/science.32.812.120.
Pittendrigh, C. S. (1954). On temperature independence in the clock system controlling emergence time in drosophila*†. Proceedings of the National Academy of Sciences, 40(10), 1018–1029. https://doi.org/10.1073/pnas.40.10.1018. (PMID: 10.1073/pnas.40.10.1018)
Ayala, F. J. (1968). Environmental Factors Limiting the Productivity and Size of Experimental Populations of Drosophila Serrata and D. Birchii. Ecology, 49(3), 562–565. https://doi.org/10.2307/1934126. (PMID: 10.2307/1934126)
Chandrashekaran, M. K., & Engelmann, W. O. (1973). Early and Late Subjective Night Phases of the Drosophila pseudoobscura Circadian Rhythm Require Different Energies of Blue Light for Phase Shifting. Zeitschrift für Naturforschung C, 28(11–12), 750–753. https://doi.org/10.1515/znc-1973-11-1218. (PMID: 10.1515/znc-1973-11-1218)
Morgan, T. H. (1935). The Relation of Genetics to Physiology and Medicine. The Scientific Monthly, 41(1), 5–18.
Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., & Pack, A. I. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25(1), 129–138. (PMID: 10.1016/S0896-6273(00)80877-610707978)
Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of Sleep and Waking in Drosophila melanogaster. Science, 287(5459), 1834–1837. https://doi.org/10.1126/science.287.5459.1834. (PMID: 10.1126/science.287.5459.183410710313)
Cirelli, C. (2003). Searching for sleep mutants of Drosophila melanogaster. BioEssays, 25(10), 940–949. https://doi.org/10.1002/bies.10333. (PMID: 10.1002/bies.1033314505361)
Shaw, P. (2003). Awakening to the Behavioral Analysis of Sleep in Drosophila. Journal of Biological Rhythms, 18(1), 4–11. https://doi.org/10.1177/0748730402239672. (PMID: 10.1177/074873040223967212568240)
Ho, K. S., & Sehgal, A. (2005). Drosophila melanogaster: An Insect Model for Fundamental Studies of Sleep. In M. W. Young (Ed.), Methods in Enzymology (Vol. 393, pp. 772–793). Academic Press. https://doi.org/10.1016/S0076-6879(05)93041-3.
Nitz, D. A., Van Swinderen, B., Tononi, G., & Greenspan, R. J. (2002). Electrophysiological correlates of rest and activity in Drosophila melanogaster. Current biology, 12(22), 1934–1940. (PMID: 10.1016/S0960-9822(02)01300-312445387)
Cirelli, C., LaVaute, T. M., & Tononi, G. (2005). Sleep and wakefulness modulate gene expression in Drosophila. Journal of Neurochemistry, 94(5), 1411–1419. https://doi.org/10.1111/j.1471-4159.2005.03291.x. (PMID: 10.1111/j.1471-4159.2005.03291.x16001966)
Zimmerman, J. E., Rizzo, W., Shockley, K. R., Raizen, D. M., Naidoo, N., Mackiewicz, M., … Pack, A. I. (2006). Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiological Genomics, 27(3), 337–350. https://doi.org/10.1152/physiolgenomics.00030.2006.
Greenspan, R. J., Tononi, G., Cirelli, C., & Shaw, P. J. (2001). Sleep and the fruit fly. Trends in neurosciences, 24(3), 142–145. (PMID: 10.1016/S0166-2236(00)01719-711182453)
Kilduff, T. S. (2000). What rest in flies can tell us about sleep in mammals. Neuron, 26(2), 295–298. (PMID: 10.1016/S0896-6273(00)81163-010839349)
Young, M. W. (2018). Time Travels: A 40-Year Journey from Drosophila’s Clock Mutants to Human Circadian Disorders (Nobel Lecture). Angewandte Chemie (International ed. in English), 57(36), 11532–11539.
Mutations and Molecules Influencing Biological Rhythms | Annual Reviews. (n.d.). Retrieved June 21, 2024, from https://www.annualreviews.org/content/journals/ https://doi.org/10.1146/annurev.ne.11.030188.002105.
Burke, M. K., & Rose, M. R. (2009). Experimental evolution with Drosophila. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(6), R1847–R1854. https://doi.org/10.1152/ajpregu.90551.2008. (PMID: 10.1152/ajpregu.90551.200819339679)
Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological reviews, 63(2), 411–436. (PMID: 10.1124/pr.110.003293214151263082451)
Kenney, D. E., & Borisy, G. G. (2009). Thomas Hunt Morgan at the marine biological laboratory: Naturalist and experimentalist. Genetics, 181(3), 841–846. (PMID: 10.1534/genetics.109.101659192762182651058)
Leandro, L. J., Szewczyk, N. J., Benguria, A., Herranz, R., Laván, D., Medina, F. J., … Marco, R. (2007). Comparative analysis of Drosophila melanogaster and Caenorhabditis elegans gene expression experiments in the European Soyuz flights to the International Space Station. Advances in Space Research, 40(4), 506–512.
Herranz, R., Husson, D., Pastor, M., Diaz, C., Mateos, J., Villa, A., … Marco, R. (2002). Towards the establishment of a permanent colony of Drosophila in the International Space Station: hardware tests and adaptation of techniques. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology, 9(1), P357–8.
Cotterill, S., & Yamaguchi, M. (2023). Role of Drosophila in Human Disease Research 3.0. International Journal of Molecular Sciences. MDPI. Retrieved from https://www.mdpi.com/1422-0067/25/1/292.
Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., … Venter, J. C. (2000). The Genome Sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195. https://doi.org/10.1126/science.287.5461.2185.
Yamaguchi, M., & Yamamoto, S. (2022). Role of Drosophila in human disease research 2.0. International Journal of Molecular Sciences. MDPI. Retrieved from https://www.mdpi.com/1422-0067/23/8/4203.
Jeibmann, A., & Paulus, W. (2009). Drosophila melanogaster as a model organism of brain diseases. International journal of molecular sciences, 10(2), 407–440. (PMID: 10.3390/ijms10020407193334152660653)
Koon, A. C., & Chan, H. Y. E. (2017). Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Frontiers in Cellular Neuroscience, 11, 70. (PMID: 10.3389/fncel.2017.00070283776945359753)
Allocca, M., Zola, S., & Bellosta, P. (2018). The Fruit Fly, Drosophila melanogaster: modeling of human diseases (Part II). Drosophila melanogaster-Model for Recent Advances in Genetics and Therapeutics, 131–156.
Cowen, M. H., Raizen, D. M., & Hart, M. P. (2024). Structural neuroplasticity after sleep loss modifies behavior and requires neurexin and neuroligin. Iscience, 27(4). Retrieved from https://www.cell.com/iscience/fulltext/S2589-0042(24)00698-9.
Flavell, S. W., Raizen, D. M., & You, Y.-J. (2020). Behavioral states. Genetics, 216(2), 315–332. (PMID: 10.1534/genetics.120.303539330239307536859)
Trojanowski, N. F., & Raizen, D. M. (2016). Call it worm sleep. Trends in neurosciences, 39(2), 54–62. (PMID: 10.1016/j.tins.2015.12.00526747654)
Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y., Sundaram, M. V., & Pack, A. I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451(7178), 569–572. (PMID: 10.1038/nature0653518185515)
Niu, L., Li, Y., Zong, P., Liu, P., Shui, Y., Chen, B., & Wang, Z.-W. (2020). Melatonin promotes sleep by activating the BK channel in C. elegans. Proceedings of the National Academy of Sciences, 117(40), 25128–25137. https://doi.org/10.1073/pnas.2010928117.
Nelson, M. D., Trojanowski, N. F., George-Raizen, J. B., Smith, C. J., Yu, C.-C., Fang-Yen, C., & Raizen, D. M. (2013). The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nature communications, 4(1), 2846. (PMID: 10.1038/ncomms384624301180)
Lawler, D. E., Chew, Y. L., Hawk, J. D., Aljobeh, A., Schafer, W. R., & Albrecht, D. R. (2021). Sleep analysis in adult C. elegans reveals state-dependent alteration of neural and behavioral responses. Journal of Neuroscience, 41(9), 1892–1907.
Dabbish, N. S., & Raizen, D. M. (2011). GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans. Journal of Neuroscience, 31(44), 15932–15943.
Chandra, R., Farah, F., Muñoz-Lobato, F., Bokka, A., Benedetti, K. L., Brueggemann, C., … Chang, E. (2023). Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell, 186(13), 2911–2928.
Singh, A., Subhashini, N., Sharma, S., & Mallick, B. N. (2013). Involvement of the α1-adrenoceptor in sleep–waking and sleep loss-induced anxiety behavior in zebrafish. Neuroscience, 245, 136–147. (PMID: 10.1016/j.neuroscience.2013.04.02623618759)
Abhishek, K., & Mallick, B. N. (2024). Sleep loss disrupts decision-making ability and neuronal cytomorphology in zebrafish and the effects are mediated by noradrenaline acting on α1-adrenoceptor. Neuropharmacology, 109861.
Zhdanova, I. V., Wang, S. Y., LeClair, O. U., & Danilova, N. P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain Research, 903(1–2), 263–268. https://doi.org/10.1016/s0006-8993(01)02444-1. (PMID: 10.1016/s0006-8993(01)02444-111382414)
Zhdanova, I. V. (2011). Sleep and its regulation in zebrafish. Reviews in the Neurosciences, 22(1), 27–36. https://doi.org/10.1515/RNS.2011.005. (PMID: 10.1515/RNS.2011.00521615259)
Zhdanova, I. V., Yu, L., Lopez-Patino, M., Shang, E., Kishi, S., & Guelin, E. (2008). Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Research Bulletin, 75(2–4), 433–441. https://doi.org/10.1016/j.brainresbull.2007.10.053. (PMID: 10.1016/j.brainresbull.2007.10.05318331912)
Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience & Biobehavioral Reviews, 8(3), 269–300. (PMID: 10.1016/0149-7634(84)90054-X)
Van Buskirk, C., & Sternberg, P. W. (2007). Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature neuroscience, 10(10), 1300–1307. (PMID: 10.1038/nn198117891142)
Reebs, S. (1992). Sleep, Inactivity and Circadian Rhythms in Fish. In M. A. Ali (Ed.), Rhythms in Fishes (pp. 127–135). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-3042-8&#95;10.
Prober, D. A., Rihel, J., Onah, A. A., Sung, R.-J., & Schier, A. F. (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. Journal of Neuroscience, 26(51), 13400–13410. (PMID: 10.1523/JNEUROSCI.4332-06.200617182791)
Yokogawa, T., Marin, W., Faraco, J., Pézeron, G., Appelbaum, L., Zhang, J., … Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS biology, 5(10), e277.
Zhdanova, I. V., Wang, S. Y., Leclair, O. U., & Danilova, N. P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain research, 903(1–2), 263–268. (PMID: 10.1016/S0006-8993(01)02444-111382414)
Chiu, C. N., & Prober, D. A. (2013). Regulation of zebrafish sleep and arousal states: Current and prospective approaches. Frontiers in neural circuits, 7, 58. (PMID: 10.3389/fncir.2013.00058235769573620505)
Sorribes, A., Þorsteinsson, H., Arnardóttir, H., Jóhannesdóttir, I. Þ, Sigurgeirsson, B., De Polavieja, G. G., & Karlsson, K. A. (2013). The ontogeny of sleep-wake cycles in zebrafish: A comparison to humans. Frontiers in neural Circuits, 7, 178. (PMID: 10.3389/fncir.2013.00178243120153826060)
Zhdanova, I. V. (2011). Sleep and its regulation in zebrafish. revneuro, 22(1), 27–36. https://doi.org/10.1515/rns.2011.005.
Jones, R. (2007). Let sleeping zebrafish lie: A new model for sleep studies. PLoS biology, 5(10), e281. (PMID: 10.1371/journal.pbio.0050281200766492020498)
Carr, A. J. F., Tamai, T. K., Young, L. C., Ferrer, V., Dekens, M. P., & Whitmore D. (2006). Light reaches the very heart of the zebrafish clock. Chronobiol Int, 23(1–2), 91–100. https://doi.org/10.1080/07420520500464395 . (PMID: 10.1007/s00441-002-0570-716687283)
Cahill, G. M. (2002). Clock mechanisms in zebrafish. Cell and Tissue Research, 309(1), 27–34. https://doi.org/10.1007/s00441-002-0570-7. (PMID: 10.1007/s00441-002-0570-712111534)
Acevedo-Canabal, A., Colón-Cruz, L., Rodriguez-Morales, R., Varshney, G. K., Burgess, S., González-Sepúlveda, L., … Behra, M. (2019). Altered Swimming Behaviors in Zebrafish Larvae Lacking Cannabinoid Receptor 2. Cannabis and Cannabinoid Research, 4(2), 88–101. https://doi.org/10.1089/can.2018.0025.
Altenhofen, S., & Bonan, C. D. (2022). Zebrafish as a Tool in the Study of Sleep and Memory-related Disorders. Current Neuropharmacology, 20(3), 540. (PMID: 10.2174/1570159X19666210712141041342549199608234)
Zhuo, J., Gill, J. P., Jansen, E. D., Jenkins, M. W., & Chiel, H. J. (2022). Use of an invertebrate animal model (Aplysia californica) to develop novel neural interfaces for neuromodulation. Frontiers in Neuroscience, 16, 1080027. (PMID: 10.3389/fnins.2022.1080027366204679813496)
Bishir, M., Aslam, M., Bhat, A., Ray, B., Elumalai, P., R, J. P., … Chidambaram, S. B. (2021). Acetylsalicylic acid improves cognitive performance in sleep deprived adult Zebrafish (Danio rerio) model. Frontiers in Bioscience-Landmark, 26(6), 114–124. https://doi.org/10.52586/4928.
Pardon, M., Claes, P., Druwé, S., Martini, M., Siekierska, A., Menet, C., … Copmans, D. (2022). Modulation of sleep behavior in zebrafish larvae by pharmacological targeting of the orexin receptor. Frontiers in Pharmacology, 13, 1012622.
Rastogi, A., Clark, C., Conlin, S., Brown, S., & Timme-Laragy, A. (2019). Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox biology, 26, 101235. https://doi.org/10.1016/j.redox.2019.101235. (PMID: 10.1016/j.redox.2019.101235312020806581987)
Vorster, A. P., Krishnan, H. C., Cirelli, C., & Lyons, L. C. (2014). Characterization of sleep in Aplysia californica. Sleep, 37(9), 1453–1463. (PMID: 251425674153062)
Vorster, A. P., & Born, J. (2017). Sleep supports inhibitory operant conditioning memory in Aplysia. Learning & Memory, 24(6), 252–256. (PMID: 10.1101/lm.045054.117)
Krishnan, H. C., Gandour, C. E., Ramos, J. L., Wrinkle, M. C., Sanchez-Pacheco, J. J., & Lyons, L. C. (2016). Acute sleep deprivation blocks short-and long-term operant memory in Aplysia. Sleep, 39(12), 2161–2171. (PMID: 10.5665/sleep.6320277482435103805)
Kanaya, H. J., Park, S., Kim, J., Kusumi, J., Krenenou, S., Sawatari, E., … Itoh, T. Q. (2020). A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Science Advances, 6(41), eabb9415. https://doi.org/10.1126/sciadv.abb9415.
Michel, M., & Lyons, L. C. (2014). Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Frontiers in Systems Neuroscience, 8, 133. (PMID: 251362974120776)
Thiede, K. I., Born, J., & Vorster, A. P. (2021). Sleep and conditioning of the siphon withdrawal reflex in Aplysia. Journal of Experimental Biology, 224(16), jeb242431.
The Surprising, Ancient Behavior of Jellyfish. (2017, September 21). California Institute of Technology. Retrieved July 2, 2024, from https://www.caltech.edu/about/news/surprising-ancient-behavior-jellyfish-79701.
Nath, R. D., Bedbrook, C. N., Abrams, M. J., Basinger, T., Bois, J. S., Prober, D. A., Sternberg, P. W., Gradinaru, V., & Goentoro, L. (2017). The jellyfish cassiopea exhibits a sleep-like state. Curr Biol., 27(19), 2984–2990.e3. https://doi.org/10.1016/j.cub.2017.08.014 . (PMID: 10.1016/j.cub.2017.08.014289430835653286)
Pittendrigh, C. S. (1967). Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences, 58(4), 1762–1767. https://doi.org/10.1073/pnas.58.4.1762.
Konopka, R. J., & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 68(9), 2112–2116. https://doi.org/10.1073/pnas.68.9.2112. (PMID: 10.1073/pnas.68.9.21125002428389363)
Pittendrigh, C. S. (1993). Temporal Organization: Reflections of a Darwinian Clock-Watcher. Annual Review of Physiology, 55(Volume 55, 1993), 17–54. https://doi.org/10.1146/annurev.ph.55.030193.000313.
Huber, R., Hill, S. L., Holladay, C., Biesiadecki, M., Tononi, G., & Cirelli, C. (2004). Sleep homeostasis in Drosophila melanogaster. Sleep, 27(4), 628–639. (PMID: 10.1093/sleep/27.4.62815282997)
Contributed Indexing: Keywords: Animal models; Aplysia; C. elegans; Drosophila; Sleep research; Zebrafish
Entry Date(s): Date Created: 20241123 Date Completed: 20251029 Latest Revision: 20251029
Update Code: 20251030
DOI: 10.1007/s12033-024-01318-z
PMID: 39579174
Databáza: MEDLINE
Popis
Abstrakt:Competing Interests: Declarations. Conflict of interests: The authors declare that they have no known conflict or competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Ethical Approval: This study does not contain any work involving animals or human participants performed by any of the authors. Hence, no IRB approval was necessary for this work.<br />Whether it involves human subjects or non-human animals, basic, translational, or clinical sleep research poses significant ethical challenges for researchers and ethical committees alike. Sleep research greatly benefits from using diverse animal models, each offering unique insights into sleep control mechanisms. The fruit fly (Drosophila melanogaster) is a superior genetic model due to its quick generation period, large progenies, and rich genetic tools. Its well-characterized genome and ability to respond to hypnotics and stimulants make it an effective tool for studying sleep genetics and physiological foundations. The nematode (Caenorhabditis elegans) has a simpler neural organization and transparent body, allowing researchers to explore molecular underpinnings of sleep control. Vertebrate models, like zebrafish (Danio rerio), provide insights into circadian rhythm regulation, memory consolidation, and drug effects on sleep. Invertebrate models, like California sea hare (Aplysia californica) and Upside-down jellyfish (Cassiopea xamachana), have simpler nervous systems and behave similarly to humans, allowing for the examination of sleep principles without logistical and ethical challenges. Combining vertebrate and invertebrate animal models offers a comprehensive approach to studying sleep, improving our understanding of sleep regulation and potentially leading to new drug discovery processes for sleep disorders and related illnesses.<br /> (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
ISSN:1559-0305
DOI:10.1007/s12033-024-01318-z