Development of a multigene expression system using 2A peptides in Rhodosporidium toruloides.

Uložené v:
Podrobná bibliografia
Názov: Development of a multigene expression system using 2A peptides in Rhodosporidium toruloides.
Autori: Guo X; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China., Bai Z; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China., Zhao H; Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA., Shi S; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China.
Zdroj: Biotechnology and bioengineering [Biotechnol Bioeng] 2024 Dec; Vol. 121 (12), pp. 3893-3905. Date of Electronic Publication: 2024 Sep 16.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
Imprint Name(s): Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
Výrazy zo slovníka MeSH: Peptides*/genetics , Peptides*/metabolism, Rhodotorula/genetics ; Rhodotorula/metabolism ; Gene Expression ; Recombinant Proteins/genetics ; Recombinant Proteins/metabolism ; Recombinant Proteins/biosynthesis ; Metabolic Engineering/methods
Abstrakt: In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as Rhodosporidium toruloides. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in R. toruloides. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in R. toruloides.
(© 2024 Wiley Periodicals LLC.)
References: Beekwilder, J., van Rossum, H. M., Koopman, F., Sonntag, F., Buchhaupt, M., Schrader, J., Hall, R. D., Bosch, D., Pronk, J. T., van Maris, A. J. A., & Daran, J. M. (2014). Polycistronic expression of a β‐carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β‐ionone production. Journal of Biotechnology, 192, 383–392. https://doi.org/10.1016/j.jbiotec.2013.12.016.
Bourre, J. M., Dumont, O., Piciotti, M., Clément, M., Chaudière, J., Bonneil, M., & Durand, G. (1991). Essentiality of omega 3 fatty acids for brain structure and function. World Review of Nutrition and Dietetics, 66, 103–117. https://doi.org/10.1159/000419283.
Carvajal‐Vergara, X., Sevilla, A., D'Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., Yang, L., Kaplan, A. D., Adler, E. D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L. J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K. D., Tartaglia, M., … Lemischka, I. R. (2010). Patient‐specific induced pluripotent stem‐cell‐derived models of LEOPARD syndrome. Nature, 465(7299), 808–812. https://doi.org/10.1038/nature09005.
Dias, C., Sousa, S., Caldeira, J., Reis, A., & Lopes da Silva, T. (2015). New dual‐stage pH control fed‐batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresource Technology, 189, 309–318. https://doi.org/10.1016/j.biortech.2015.04.009.
Donnelly, M. L. L., Hughes, L. E., Luke, G., Mendoza, H., Ten Dam, E., Gani, D., & Ryan, M. D. (2001). The ‘cleavage’ activities of foot‐and‐mouth disease virus 2A site‐directed mutants and naturally occurring ‘2A‐like’ sequences. Journal of General Virology, 82(5), 1027–1041. https://doi.org/10.1099/0022-1317-82-5-1027.
Donnelly, M. L. L., Luke, G., Mehrotra, A., Li, X., Hughes, L. E., Gani, D., & Ryan, M. D. (2001). Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal ‘skip’. Journal of General Virology, 82(5), 1013–1025. https://doi.org/10.1099/0022-1317-82-5-1013.
Fillet, S., Gibert, J., Suárez, B., Lara, A., Ronchel, C., & Adrio, J. L. (2015). Fatty alcohols production by oleaginous yeast. Journal of Industrial Microbiology and Biotechnology, 42(11), 1463–1472. https://doi.org/10.1007/s10295-015-1674-x.
Gao, Z., Ma, Y., Wang, Q., Zhang, M., Wang, J., & Liu, Y. (2016). Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresource Technology, 218, 373–379. https://doi.org/10.1016/j.biortech.2016.06.088.
Geier, M., Fauland, P., Vogl, T., & Glieder, A. (2015). Compact multi‐enzyme pathways in P. pastoris. Chemical Communications, 51(9), 1643–1646. https://doi.org/10.1039/C4CC08502G.
Gustavsson, M., Lehtiö, J., Denman, S., Teeri, T. T., Hult, K., & Martinelle, M. (2001). Stable linker peptides for a cellulose‐binding domain–lipase fusion protein expressed in Pichia pastoris. Protein Engineering, Design and Selection, 14(9), 711–715. https://doi.org/10.1093/protein/14.9.711.
Harvey, C. J. B., Tang, M., Schlecht, U., Horecka, J., Fischer, C. R., Lin, H. C., Li, J., Naughton, B., Cherry, J., Miranda, M., Li, Y. F., Chu, A. M., Hennessy, J. R., Vandova, G. A., Inglis, D., Aiyar, R. S., Steinmetz, L. M., Davis, R. W., Medema, M. H., … Hillenmeyer, M. E. (2018). HEx: A heterologous expression platform for the discovery of fungal natural products. Science Advances, 4(4), eaar5459. https://doi.org/10.1126/sciadv.aar5459.
Hellen, C. U., & Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593–1612. https://doi.org/10.1101/gad.891101.
Holst, J., Vignali, K. M., Burton, A. R., & Vignali, D. A. A. (2006). Rapid analysis of T‐cell selection in vivo using T cell‐receptor retrogenic mice. Nature Methods, 3(3), 191–197. https://doi.org/10.1038/nmeth858.
Jiao, X., Zhang, Q., Zhang, S., Yang, X., Wang, Q., & Zhao, Z. K. (2018). Efficient co‐expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 18(8), foy086. https://doi.org/10.1093/femsyr/foy086.
Jiao, X., Zhang, Y., Liu, X., Zhang, Q., Zhang, S., & Zhao, Z. K. (2019). Developing a CRISPR/Cas9 system for genome editing in the basidiomycetous yeast Rhodosporidium toruloides. Biotechnology Journal, 14(7), e1900036. https://doi.org/10.1002/biot.201900036.
Johns, A. M. B., Love, J., & Aves, S. J. (2016). Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides. Frontiers in Microbiology, 7, 1666. https://doi.org/10.3389/fmicb.2016.01666.
Khoomrung, S., Chumnanpuen, P., Jansa‐ard, S., Nookaew, I., & Nielsen, J. (2012). Fast and accurate preparation fatty acid methyl esters by microwave‐assisted derivatization in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 94(6), 1637–1646. https://doi.org/10.1007/s00253-012-4125-x.
Koh, C. M. J., Liu, Y., Moehninsi, Du, M., & Ji, L. (2014). Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70‐deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiology, 14, 50. https://doi.org/10.1186/1471-2180-14-50.
Lin, X., Wang, Y., Zhang, S., Zhu, Z., Zhou, Y. J., Yang, F., Sun, W., Wang, X., & Zhao, Z. K. (2014). Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 14(4), 547–555. https://doi.org/10.1111/1567-1364.12140.
Liu, H., Jiao, X., Wang, Y., Yang, X., Sun, W., Wang, J., Zhang, S., & Zhao, Z. K. (2017). Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Research, 17(2), fox017. https://doi.org/10.1093/femsyr/fox017.
Liu, Y., Koh, C. M. J., Ngoh, S. T., & Ji, L. (2015). Engineering an efficient and tight D‐amino acid‐inducible gene expression system in Rhodosporidium/Rhodotorula species. Microbial Cell Factories, 14, 170. https://doi.org/10.1186/s12934-015-0357-7.
Liu, Y., Koh, C. M. J., Sun, L., Hlaing, M. M., Du, M., Peng, N., & Ji, L. (2013). Characterization of glyceraldehyde‐3‐phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Applied Microbiology and Biotechnology, 97(2), 719–729. https://doi.org/10.1007/s00253-012-4223-9.
Liu, Y., Koh, C. M. J., Yap, S. A., Du, M., Hlaing, M. M., & Ji, L. (2018). Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome‐wide insertional mutagenesis. BMC Microbiology, 18(1), 14. https://doi.org/10.1186/s12866-018-1151-6.
Liu, Z., Chen, O., Wall, J. B. J., Zheng, M., Zhou, Y., Wang, L., Ruth Vaseghi, H., Qian, L., & Liu, J. (2017). Systematic comparison of 2A peptides for cloning multi‐genes in a polycistronic vector. Scientific Reports, 7(1), 2193. https://doi.org/10.1038/s41598-017-02460-2.
Otoupal, P. B., Ito, M., Arkin, A. P., Magnuson, J. K., Gladden, J. M., & Skerker, J. M. (2019). Multiplexed CRISPR‐Cas9‐based genome editing of Rhodosporidium toruloides. mSphere, 4(2), e00099‐19. https://doi.org/10.1128/mSphere.00099-19.
Park, Y.‐K., Nicaud, J.‐M., & Ledesma‐Amaro, R. (2018). The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends in Biotechnology, 36(3), 304–317. https://doi.org/10.1016/j.tibtech.2017.10.013.
Qi, F., Huang, J., Zhang, M., Sun, L., Jiang, X., & Zou, L. (2016). Rhodospridium toruloides for producing linolenic acid and preparation method thereof, CN 106010993 A.
Qi, F., Zhang, M., Sun, L., Jiang, X., Huang, J., & Chen, Y. (2016). Rhodospridium toruloides for producing linoleic acid and linolenic acid and preparation method thereof, CN 105950494 A.
Ryan, M. D., & Drew, J. (1994). Foot‐and‐mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. The EMBO Journal, 13(4), 928–933. https://doi.org/10.1002/j1460-2075.1994.tb06337x.
Ryan, M. D., King, A. M. Q., & Thomas, G. P. (1991). Cleavage of foot‐and‐mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology, 72(11), 2727–2732. https://doi.org/10.1099/0022-1317-72-11-2727.
Schultz, J. C., Cao, M., & Zhao, H. (2019). Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides. Biotechnology and Bioengineering, 116(8), 2103–2109. https://doi.org/10.1002/bit.27001.
Shen, H., Jin, G., Hu, C., Gong, Z., Bai, F., & Zhao, Z. K. (2012). Effects of dilution rate and carbon‐to‐nitrogen ratio on lipid accumulation by Rhodosporidium toruloides under chemostat conditions. Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 28(1), 56–64.
Shi, S., Si, T., Liu, Z., Zhang, H., Ang, E. L., & Zhao, H. (2016). Metabolic engineering of a synergistic pathway for n‐butanol production in Saccharomyces cerevisiae. Scientific Reports, 6, 25675. https://doi.org/10.1038/srep25675.
Souza‐Moreira, T. M., Navarrete, C., Chen, X., Zanelli, C. F., Valentini, S. R., Furlan, M., Nielsen, J., & Krivoruchko, A. (2018). Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Research, 18(5), foy036. https://doi.org/10.1093/femsyr/foy036.
Tsai, Y. Y., Ohashi, T., Kanazawa, T., Polburee, P., Misaki, R., Limtong, S., & Fujiyama, K. (2017). Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3‐TK16. Current Genetics, 63(2), 359–371. https://doi.org/10.1007/s00294-016-0629-8.
Unkles, S. E., Valiante, V., Mattern, D. J., & Brakhage, A. A. (2014). Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chemistry & Biology, 21(4), 502–508. https://doi.org/10.1016/j.chembiol.2014.02.010.
Wang, X., & Marchisio, M. A. (2021). Synthetic polycistronic sequences in eukaryotes. Synthetic and Systems Biotechnology, 6(4), 254–261. https://doi.org/10.1016/j.synbio.2021.09.003.
Wang, Y., Zhang, S., Pötter, M., Sun, W., Li, L., Yang, X., Jiao, X., & Zhao, Z. K. (2016). Overexpression of Δ12‐fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid‐rich lipids. Applied Biochemistry and Biotechnology, 180(8), 1497–1507. https://doi.org/10.1007/s12010-016-2182-9.
Zhang, S., Ito, M., Skerker, J. M., Arkin, A. P., & Rao, C. V. (2016). Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high‐density fermentation. Applied Microbiology and Biotechnology, 100(21), 9393–9405. https://doi.org/10.1007/s00253-016-7815-y.
Zhang, Y., Peng, J., Zhao, H., & Shi, S. (2021). Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnology for Biofuels, 14(1), 115. https://doi.org/10.1186/s13068-021-01965-3.
Zhao, X., Peng, F., Du, W., Liu, C., & Liu, D. (2012). Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess and Biosystems Engineering, 35(6), 993–1004. https://doi.org/10.1007/s00449-012-0684-6.
Grant Information: 22278024 National Natural Science Foundation of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering
Contributed Indexing: Keywords: 2A peptides; R. toruloides; polycistronic expression; α‐linolenic acid
Substance Nomenclature: 0 (Peptides)
0 (Recombinant Proteins)
SCR Organism: Rhodotorula toruloides
Entry Date(s): Date Created: 20240917 Date Completed: 20241111 Latest Revision: 20241111
Update Code: 20250114
DOI: 10.1002/bit.28843
PMID: 39285630
Databáza: MEDLINE
Popis
Abstrakt:In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as Rhodosporidium toruloides. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in R. toruloides. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in R. toruloides.<br /> (© 2024 Wiley Periodicals LLC.)
ISSN:1097-0290
DOI:10.1002/bit.28843