Development of a Prognostic Risk Model Based on Oxidative Stress-related Genes for Platinum-resistant Ovarian Cancer Patients.

Uložené v:
Podrobná bibliografia
Názov: Development of a Prognostic Risk Model Based on Oxidative Stress-related Genes for Platinum-resistant Ovarian Cancer Patients.
Autori: Su H; Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China., Hou Y; Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China., Zhu D; Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China., Pang R; Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China., Tian S; Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China., Ding R; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China., Chen Y; National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China., Zhang S; Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
Zdroj: Recent patents on anti-cancer drug discovery [Recent Pat Anticancer Drug Discov] 2025; Vol. 20 (1), pp. 89-101.
Spôsob vydávania: Evaluation Study; Journal Article
Jazyk: English
Informácie o časopise: Publisher: Bentham Science Publishers Country of Publication: United Arab Emirates NLM ID: 101266081 Publication Model: Print Cited Medium: Internet ISSN: 2212-3970 (Electronic) Linking ISSN: 15748928 NLM ISO Abbreviation: Recent Pat Anticancer Drug Discov Subsets: MEDLINE
Imprint Name(s): Original Publication: Saif Zone, Sharjah, U.A.E. ; San Francisco, CA : Bentham Science Publishers, c2006-
Výrazy zo slovníka MeSH: Ovarian Neoplasms*/drug therapy , Ovarian Neoplasms*/genetics , Gene Expression Profiling*/methods , Prediction Algorithms* , Oxidative Stress*/genetics , Genetic Risk Score* , Drug Resistance, Neoplasm*/genetics, Humans ; Female ; Proportional Hazards Models ; Machine Learning ; Platinum Compounds/adverse effects ; Antineoplastic Agents/adverse effects
Abstrakt: Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum- resistant OC patients.
Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments.
Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells.
Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.
(Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
References: Zheng M.; Oxidative stress response biomarkers of ovarian cancer based on single-cell and bulk RNA sequencing. Oxid Med Cell Longev 2023,2023,1261039. (PMID: 10.1155/2023/126103936743693)
Armstrong D.K.; Alvarez R.D.; Bakkum-Gamez J.N.; Barroilhet L.; Behbakht K.; Berchuck A.; Chen L.; Cristea M.; DeRosa M.; Eisenhauer E.L.; Gershenson D.M.; Gray H.J.; Grisham R.; Hakam A.; Jain A.; Karam A.; Konecny G.E.; Leath C.A.; Liu J.; Mahdi H.; Martin L.; Matei D.; McHale M.; McLean K.; Miller D.S.; O’Malley D.M.; Percac-Lima S.; Ratner E.; Remmenga S.W.; Vargas R.; Werner T.L.; Zsiros E.; Burns J.L.; Engh A.M.; Ovarian cancer, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021,19(2),191-226. (PMID: 10.6004/jnccn.2021.000733545690)
Liu Q.; Identifying the role of oxidative stress-related genes as prognostic biomarkers and predicting the response of immunotherapy and chemotherapy in ovarian cancer. Oxid Med Cell Longev 2022,2022,6575534. (PMID: 10.1155/2022/657553436561981)
Stewart C.; Ralyea C.; Lockwood S.; Ovarian cancer: An integrated review. Semin Oncol Nurs 2019,35(2),151-156. (PMID: 10.1016/j.soncn.2019.02.00130867104)
Yang L.; Xie H.J.; Li Y.Y.; Wang X.; Liu X.X.; Mai J.; Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022,47(4),82. (PMID: 10.3892/or.2022.829335211759)
Crijns A.P.G.; Fehrmann R.S.N.; de Jong S.; Gerbens F.; Meersma G.J.; Klip H.G.; Hollema H.; Hofstra R.M.W.; Meerman G.J.; de Vries E.G.E.; van der Zee A.G.J.; Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med 2009,6(2),e1000024. (PMID: 10.1371/journal.pmed.100002419192944)
Dvorak Z.; Starha P.; Travnicek Z.; New diiodo-platinum(+II) complexes with 7-azaindole, useful for treating breast cancer, osteosarcoma, ovarian cancer resistant against cisplatin, lung cancer, cervical cancer and malignant melanoma. 2015.
Burns N.M.; Treating patient suffering from cancer e.g. platinum-resistant ovarian cancer and breast cancer, comprises administering a poly adenosine diphosphate ribose polymerase inhibitor, and a long-acting topoisomerase-I inhibitor to the patient.
Reddy J.A.; Leamon C.P.; Nguyen B.; Treating platinum-resistant ovarian cancer and endometrial or non-small cell lung cancers, comprises administering vintafolide, and paclitaxel having a mode of action of mitosis inhibition.
Braley C.; Bradley C.; Treating platinum-resistant recurrent ovarian cancer in patient involves administering 4-iodo-3-nitrobenzamide or its metabolite or salt, gemcitabine and carboplatin to patient having platinum-resistant recurrent ovarian cancer. 2011.
Bose R.N.; Bose R.; New isolated monomeric platinum complex useful for treating cancer e.g. ovarian cancer, testicular cancer, small cell lung cancer and cancers that are resistant to anticancer agents e.g. cisplatin, carboplatin. 2009.
Menichincheri M.; New 7-substd. 7-deoxy-taxol derivs. used as antitumour agents, e.g. for treating platinum-resistant ovarian cancer. 1996.
Bernasconi C.; Bollag D.; Treating a patient diagnosed with a platinum-resistant   ovarian   cancer, comprises administering an anti-vascular endothelial growth factor antibody and a chemotherapeutic to the patient. 2013.
Kelsey S.M.; Treating cancer e.g. platinum-resistant ovarian cancer, involves administering human epidermal growth factor receptor 2 (HER2) antibody that inhibits HER dimerization more effectively than trastuzumab and gemcitabine. 2012.
Li J.; Qi F.; Su H.; Zhang C.; Zhang Q.; Chen Y.; Chen P.; Su L.; Chen Y.; Yang Y.; Chen Z.; Zhang S.; GRP75-faciliated Mitochondria-associated ER Membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci 2022,18(7),2914-2931. (PMID: 10.7150/ijbs.7157135541901)
Su L.; Sun Z.; Qi F.; Su H.; Qian L.; Li J.; Zuo L.; Huang J.; Yu Z.; Li J.; Chen Z.; Zhang S.; GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology 2022,20(1),340. (PMID: 10.1186/s12951-022-01530-635858873)
Wu Y.; Zhang X.; Wang Z.; Zheng W.; Cao H.; Shen W.; Targeting oxidative phosphorylation as an approach for the treatment of ovarian cancer. Front Oncol 2022,12,971479. (PMID: 10.3389/fonc.2022.97147936147929)
Datta A.; Brosh R.M.; WRN rescues replication forks compromised by a BRCA2 deficiency: Predictions for how inhibition of a helicase that suppresses premature aging tilts the balance to fork demise and chromosomal instability in cancer. BioEssays 2022,44(8),2200057. (PMID: 10.1002/bies.20220005735751457)
Belotte J.; Fletcher N.M.; Awonuga A.O.; Alexis M.; Abu-Soud H.M.; Saed M.G.; Diamond M.P.; Saed G.M.; The role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer. Reprod Sci 2014,21(4),503-508. (PMID: 10.1177/193371911350340324077440)
Fletcher-King N.M.; The role of oxidative stress in the pathogenesis of epithelial ovarian cancer 2013,1-22.
Wu C.; He L.; Wei Q.; Li Q.; Jiang L.; Zhao L.; Wang C.; Li J.; Wei M.; Bioinformatic profiling identifies a platinum-resistant–related risk signature for ovarian cancer. Cancer Med 2020,9(3),1242-1253. (PMID: 10.1002/cam4.269231856408)
Jelic M.; Mandic A.; Maricic S.; Srdjenovic B.; Oxidative stress and its role in cancer. J Cancer Res Ther 2021,17(1),22-28. (PMID: 10.4103/jcrt.JCRT_862_1633723127)
Saed G.M.; Diamond M.P.; Fletcher N.M.; Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol Oncol 2017,145(3),595-602. (PMID: 10.1016/j.ygyno.2017.02.03328237618)
Cruz I.N.; Coley H.M.; Kramer H.B.; Madhuri T.K.; Safuwan N.A.M.; Angelino A.R.; Yang M.; Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics 2017,14(1),35-52. (PMID: 10.21873/cgp.2001728031236)
Zhang J.; Yang L.; Xiang X.; Li Z.; Qu K.; Li K.; A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging 2018,10(6),1366-1379. (PMID: 10.18632/aging.10147329910195)
Verschoor M.L.; Singh G.; Ets-1 regulates intracellular glutathione levels: key target for resistant ovarian cancer. Mol Cancer 2013,12(1),138. (PMID: 10.1186/1476-4598-12-13824238102)
Wilson L.A.; Yamamoto H.; Singh G.; Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther 2004,3(7),823-832. (PMID: 10.1158/1535-7163.823.3.715252143)
Takeda Y.; Hizukuri S.; Actions of Aspergillus oryzae alpha-amylase, potato phosphorylase, and rabbit muscle phosphorylase a and b on phosphorylated (1→4)-α-d-glucan. Carbohydr Res 1986,153(2),295-307. (PMID: 10.1016/S0008-6215(00)90271-43096568)
Reuter S.; Gupta S.C.; Chaturvedi M.M.; Aggarwal B.B.; Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010,49(11),1603-1616. (PMID: 10.1016/j.freeradbiomed.2010.09.00620840865)
Al-Murrani S.; Al-Murani S.; Al Murrani S.; Predicting resistance of chemotherapeutic drug to ovarian cancer, by detecting several expressed genes e.g. S100A10 in biological sample and control sample, comparing amount of expressed gene in biological sample with control sample. 2005.
Wawrowicz K.; Majkowska-Pilip A.; Szwed M.; Żelechowska-Matysiak K.; Chajduk E.; Bilewicz A.; Oxidative status as an attribute for selective antitumor activity of platinum-containing nanoparticles against hepatocellular carcinoma. Int J Mol Sci 2022,23(23),14773. (PMID: 10.3390/ijms23231477336499101)
Qin Z.; Tong H.; Li T.; Cao H.; Zhu J.; Yin S.; He W.; SPHK1 contributes to cisplatin resistance in bladder cancer cells via the NONO/STAT3 axis. Int J Mol Med 2021,48(5),204. (PMID: 10.3892/ijmm.2021.503734549307)
Hart P.C.; Chiyoda T.; Liu X.; Weigert M.; Curtis M.; Chiang C.Y.; Loth R.; Lastra R.; McGregor S.M.; Locasale J.W.; Lengyel E.; Romero I.L.; SPHK1 is a novel target of metformin in ovarian cancer. Mol Cancer Res 2019,17(4),870-881. (PMID: 10.1158/1541-7786.MCR-18-040930655321)
Shida D.; Takabe K.; Kapitonov D.; Milstien S.; Spiegel S.; Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 2008,9(8),662-673. (PMID: 10.2174/13894500878513240218691013)
Richard P.; Feng S.; Tsai Y.L.; Li W.; Rinchetti P.; Muhith U.; Irizarry-Cole J.; Stolz K.; Sanz L.A.; Hartono S.; Hoque M.; Tadesse S.; Seitz H.; Lotti F.; Hirano M.; Chédin F.; Tian B.; Manley J.L.; SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2021,17(8),1889-1906. (PMID: 10.1080/15548627.2020.179629232686621)
Lu M.; Liu B.; Li D.; Gao Z.; Li W.; Zhou X.; Zhan H.; PXDNL activates the motility of urothelial bladder carcinoma cells through the Wnt/β-catenin pathway and has a prognostic value. Life Sci 2023,312,121270. (PMID: 10.1016/j.lfs.2022.12127036493879)
Mengoli V.; Ceppi I.; Sanchez A.; Cannavo E.; Halder S.; Scaglione S.; Gaillard P.H.; McHugh P.J.; Riesen N.; Pettazzoni P.; Cejka P.; helicase and mismatch repair complexes independently and synergistically disrupt cruciform structures. EMBO J 2023,42(3),e111998. (PMID: 10.15252/embj.202211199836541070)
Datta A.; Biswas K.; Sommers J.A.; Thompson H.; Awate S.; Nicolae C.M.; Thakar T.; Moldovan G.L.; Shoemaker R.H.; Sharan S.K.; Brosh R.M.; WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nat Commun 2021,12(1),6561. (PMID: 10.1038/s41467-021-26811-w34772932)
Iglesias-Pedraz J.M.; Fossatti-Jara D.M.; Valle-Riestra-Felice V.; Cruz-Visalaya S.R.; Ayala Felix J.A.; Comai L.; WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells. BMC Mol Cell Biol 2020,21(1),71. (PMID: 10.1186/s12860-020-00315-933054770)
Orlovetskie N.; Serruya R.; Abboud-Jarrous G.; Jarrous N.; Targeted inhibition of WRN helicase, replication stress and cancer. Biochim Biophys Acta Rev Cancer 2017,1867(1),42-48. (PMID: 10.1016/j.bbcan.2016.11.00427902925)
Lee S.Y.; Lee H.; Kim E.S.; Park S.; Lee J.; Ahn B.; WRN translocation from nucleolus to nucleoplasm is regulated by SIRT1 and required for DNA repair and the development of chemoresistance. Mutat Res 2015,774,40-48. (PMID: 10.1016/j.mrfmmm.2015.03.00125801465)
Arai A.; Chano T.; Futami K.; Furuichi Y.; Ikebuchi K.; Inui T.; Tameno H.; Ochi Y.; Shimada T.; Hisa Y.; Okabe H.; RECQL1 and WRN proteins are potential therapeutic targets in head and neck squamous cell carcinoma. Cancer Res 2011,71(13),4598-4607. (PMID: 10.1158/0008-5472.CAN-11-032021571861)
Mao F.J.; Sidorova J.M.; Lauper J.M.; Emond M.J.; Monnat R.J.; The human WRN and BLM RecQ helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage. Cancer Res 2010,70(16),6548-6555. (PMID: 10.1158/0008-5472.CAN-10-047520663905)
Luo J.; WRN protein and Werner syndrome. N Am J Med Sci 2010,3(4),205-207. (PMID: 10.7156/v3i4p20522180828)
Lebel M.; Massip L.; Garand C.; Thorin E.; Ascorbate improves metabolic abnormalities in Wrn mutant mice but not the free radical scavenger catechin. Ann N Y Acad Sci 2010,1197(1),40-44. (PMID: 10.1111/j.1749-6632.2010.05189.x20536831)
Multani A.S.; Chang S.; WRN at telomeres: implications for aging and cancer. J Cell Sci 2007,120(5),713-721. (PMID: 10.1242/jcs.0339717314245)
Wu X.; Han L.Y.; Zhang X.X.; Wang L.; The Study of Nrf2 signaling pathway in ovarian cancer. Crit Rev Eukaryot Gene Expr 2018,28(4),329-336. (PMID: 10.1615/CritRevEukaryotGeneExpr.201802028630311581)
Ma L.; Wang H.; Wang C.; Su J.; Xie Q.; Xu L.; Yu Y.; Liu S.; Li S.; Xu Y.; Li Z.; Failure of elevating calcium induces oxidative stress tolerance and imparts cisplatin resistance in ovarian cancer cells. Aging Dis 2016,7(3),254-266. (PMID: 10.14336/AD.2016.011827330840)
Donadille B.; D’Anella P.; Auclair M.; Uhrhammer N.; Sorel M.; Grigorescu R.; Ouzounian S.; Cambonie G.; Boulot P.; Laforêt P.; Carbonne B.; Christin-Maitre S.; Bignon Y.J.; Vigouroux C.; Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis 2013,8(1),106. (PMID: 10.1186/1750-1172-8-10623849162)
Steffensen K.D.; Waldstrøm M.; Brandslund I.; Petzold M.; Jakobsen A.; The prognostic and predictive value of combined HE4 and CA-125 in ovarian cancer patients. Int J Gynecol Cancer 2012,22(9),1474-1482. (PMID: 10.1097/IGC.0b013e3182681cfd23095772)
Kanagaraj R.; Parasuraman P.; Mihaljevic B.; van Loon B.; Burdova K.; König C.; Furrer A.; Bohr V.A.; Hübscher U.; Janscak P.; Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage. Nucleic Acids Res 2012,40(17),8449-8459. (PMID: 10.1093/nar/gks64822753033)
Savva C.; Sadiq M.; Sheikh O.; Karim S.; Trivedi S.; Green A.R.; Rakha E.A.; Madhusudan S.; Arora A.; Werner syndrome protein expression in breast cancer. Clin Breast Cancer 2021,21(1),57-73.e7. (PMID: 10.1016/j.clbc.2020.07.01332919863)
Rusz O.; Pál M.; Szilágyi É.; Rovó L.; Varga Z.; Tomisa B.; Fábián G.; Kovács L.; Nagy O.; Mózes P.; Reisz Z.; Tiszlavicz L.; Deák P.; Kahán Z.; The expression of checkpoint and DNA repair genes in head and neck cancer as possible predictive factors. Pathol Oncol Res 2017,23(2),253-264. (PMID: 10.1007/s12253-016-0088-z27411922)
Sakao Y.; Kato A.; Tsuji T.; Yasuda H.; Togawa A.; Fujigaki Y.; Kahyo T.; Setou M.; Hishida A.; Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney. Clin Exp Nephrol 2011,15(3),363-372. (PMID: 10.1007/s10157-011-0421-521416250)
Das A.; Boldogh I.; Lee J.W.; Harrigan J.A.; Hegde M.L.; Piotrowski J.; de Souza Pinto N.; Ramos W.; Greenberg M.M.; Hazra T.K.; Mitra S.; Bohr V.A.; The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 2007,282(36),26591-26602. (PMID: 10.1074/jbc.M70334320017611195)
Pierceall W.E.; Sprott K.M.; Weaver D.T.; Determining the sensitivity or resistance of an ovarian cancer to a chemotherapeutic agent comprises identifying an alteration in at least one DNARMARKER e.g. PARP1 and XPF. 2012.
Munroe D; Chan D W; Zhang Z; Chan D; Panel for pre-operatively assessing subject's risk of having ovarian cancer comprises markers cancer antigen 125, prealbumin, transferrin and human epididymis protein 4. 2014.
Esteller M.; Predicting the likelihood of successful treatment of cancer with topoisomerase, DNA methyltransferase, and/or histone deacetylases inhibitors, comprises determining the methylation status of a RecQ helicase family gene. 2009.
Croce C.M.; Vecchione A.; Croce C.; Diagnosing ovarian cancer resistant to chemotherapeutic intervention, preferably serous epithelial ovarian carcinoma, involves identifying e.g. microRNA-484 expression level in sample, and comparing expression levels with control. 2013.
Ding DN; Xie LZ; Shen Y; Li J; Guo Y; Fu Y; Liu FY; Han FJ; Insights into the role of oxidative stress in ovarian cancer. Oxid Med Cell Longev 2021,2021,8388258. (PMID: 10.1155/2021/838825834659640)
Katanić Stanković J.S.; Selaković D.; Rosić G.; Oxidative damage as a fundament of systemic toxicities induced by cisplatin—the crucial limitation or potential therapeutic target? Int J Mol Sci 2023,24(19),14574. (PMID: 10.3390/ijms24191457437834021)
Podratz J.L.; Knight A.M.; Ta L.E.; Staff N.P.; Gass J.M.; Genelin K.; Schlattau A.; Lathroum L.; Windebank A.J.; Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 2011,41(3),661-668. (PMID: 10.1016/j.nbd.2010.11.01721145397)
Galadari S.; Rahman A.; Pallichankandy S.; Thayyullathil F.; Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017,104,144-164. (PMID: 10.1016/j.freeradbiomed.2017.01.00428088622)
Cai X.; Li Y.; Zheng J.; Liu L.; Jiao Z.; Lin J.; Jiang S.; Lin X.; Sun Y.; Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front Oncol 2024,13,1291559. (PMID: 10.3389/fonc.2023.129155938370348)
Opresko P.L.; Calvo J.P.; von Kobbe C.; Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 2007,128(7-8),423-436. (PMID: 10.1016/j.mad.2007.05.00917624410)
Wirtenberger M.; Frank B.; Hemminki K.; Klaes R.; Schmutzler R.K.; Wappenschmidt B.; Meindl A.; Kiechle M.; Arnold N.; Weber B.H.; Niederacher D.; Bartram C.R.; Burwinkel B.; Interaction of Werner and Bloom syndrome genes with p53 in familial breast cancer. Carcinogenesis 2005,27(8),1655-1660. (PMID: 10.1093/carcin/bgi37416501249)
Maj T.; Wang W.; Crespo J.; Zhang H.; Wang W.; Wei S.; Zhao L.; Vatan L.; Shao I.; Szeliga W.; Lyssiotis C.; Liu J.R.; Kryczek I.; Zou W.; Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 2017,18(12),1332-1341. (PMID: 10.1038/ni.386829083399)
Wang X.; Xu Y.; Dai L.; Yu Z.; Wang M.; Chan S.; Sun R.; Han Q.; Chen J.; Zuo X.; Wang Z.; Hu X.; Yang Y.; Zhao H.; Hu K.; Zhang H.; Chen W.; A novel oxidative stress- and ferroptosis-related gene prognostic signature for distinguishing cold and hot tumors in colorectal cancer. Front Immunol 2022,13,1043738. (PMID: 10.3389/fimmu.2022.104373836389694)
Tan Y.; Li J.; Zhao G.; Huang K.C.; Cardenas H.; Wang Y.; Matei D.; Cheng J.X.; Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun 2022,13(1),4554. (PMID: 10.1038/s41467-022-32101-w35931676)
Liu Q.; Yu M.; Zhang T.; Construction of oxidative stress-related genes risk model predicts the prognosis of uterine corpus endometrial cancer patients. Cancers 2022,14(22),5572. (PMID: 10.3390/cancers1422557236428665)
Wu X.; Zhu Z.; Gai M.; Prognostic modelling of colorectal cancer based on oxidative stress-related genes. J Cancer Res Clin Oncol 2023,149(12),10623-10631. (PMID: 10.1007/s00432-023-04914-937300722)
Guay D.; Gaudreault I.; Massip L.; Lebel M.; Formation of a nuclear complex containing the p53 tumor suppressor, YB-1, and the Werner syndrome gene product in cells treated with UV light. Int J Biochem Cell Biol 2006,38(8),1300-1313. (PMID: 10.1016/j.biocel.2006.01.00816584908)
Szekely A.M.; Bleichert F.; Nümann A.; Van Komen S.; Manasanch E.; Ben Nasr A.; Canaan A.; Weissman S.M.; Werner protein protects nonproliferating cells from oxidative DNA damage. Mol Cell Biol 2005,25(23),10492-10506. (PMID: 10.1128/MCB.25.23.10492-10506.200516287861)
Zhu Y.; Tang Q.; Cao W.; Zhou N.; Jin X.; Song Z.; Zu L.; Xu S.; Identification of a novel oxidative stress-related prognostic model in lung adenocarcinoma. Front Pharmacol 2022,13,1030062. (PMID: 10.3389/fphar.2022.103006236467027)
Huang X.; Lu Z.; He M.; Feng Y.; Yu S.; Shen B.; Lu J.; Wu P.; Pan B.; Ding H.; Chen C.; Sun Y.; A prognostic risk model of a novel oxidative stress-related signature predicts clinical prognosis and demonstrates immune relevancy in lung adenocarcinoma. Oxid Med Cell Longev 2022,2022,1-43. (PMID: 10.1155/2022/226201436439693)
Pagano G.; Zatterale A.; Degan P.; d’Ischia M.; Kelly F.J.; Pallardó F.V.; Kodama S.; Multiple involvement of oxidative stress in Werner syndrome phenotype. Biogerontology 2005,6(4),233-243. (PMID: 10.1007/s10522-005-2624-116333757)
Nguyen D.T.; Rovira I.I.; Finkel T.; Regulation of the Werner helicase through a direct interaction with a subunit of protein kinase A. FEBS Lett 2002,521(1-3),170-174. (PMID: 10.1016/S0014-5793(02)02868-512067711)
Lin D.; Hu B.; Zhu S.; Wu Y.; Exploring a ferroptosis and oxidative stress-based prognostic model for clear cell renal cell carcinoma. Front Oncol 2023,13,1131473. (PMID: 10.3389/fonc.2023.113147337064095)
Wang D.; Deng Z.; Lu M.; Deng K.; Li Z.; Zhou F.; Integrated analysis of the roles of oxidative stress related genes and prognostic value in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023,149(13),11057-11071. (PMID: 10.1007/s00432-023-04983-w37340189)
Tong S.; Xia M.; Xu Y.; Sun Q.; Ye L.; Yuan F.; Wang Y.; Cai J.; Ye Z.; Tian D.; Identification and validation of a novel prognostic signature based on mitochondria and oxidative stress related genes for glioblastoma. J Transl Med 2023,21(1),136. (PMID: 10.1186/s12967-023-03970-636814293)
Zeng S.; Li W.; Ouyang H.; Xie Y.; Feng X.; Huang L.; A novel prognostic pyroptosis-related gene signature correlates to oxidative stress and immune-related features in gliomas. Oxid Med Cell Longev 2023,2023,1-28. (PMID: 10.1155/2023/425611636778205)
Li J.; Wang S.; Chi X.; He Q.; Tao C.; Ding Y.; Wang J.; Zhao J.; Wang W.; Identification of heterogeneous subtypes and a prognostic model for gliomas based on mitochondrial dysfunction and oxidative stress-related genes. Front Immunol 2023,14,1183475. (PMID: 10.3389/fimmu.2023.118347537334354)
Ren Z.; Zhang J.; Zheng D.; Luo Y.; Song Z.; Chen F.; Li A.; Liu X.; Identification of prognosis-related oxidative stress model with immunosuppression in HCC. Biomedicines 2023,11(3),695. (PMID: 10.3390/biomedicines1103069536979675)
Hong J.; Cai X.; Construction of a novel oxidative stress response-related gene signature for predicting the prognosis and therapeutic responses in hepatocellular carcinoma. Dis Markers 2022,2022,1-20. (PMID: 10.1155/2022/620198736133439)
Li S.; Cao T.; Wu T.; Xu J.; Shen C.; Hou S.; Wu Y.; Identification of a ferroptosis and oxidative stress-associated gene signature for prognostic stratification of ovarian cancer. Am J Transl Res 2023,15(4),2645-2655. (PMID: 37193145)
Hu X.; Qin W.; Li S.; He M.; Wang Y.; Guan S.; Zhao H.; Yao W.; Wei M.; Liu M.; Wu H.; Polymorphisms in DNA repair pathway genes and ABCG2 gene in advanced colorectal cancer: correlation with tumor characteristics and clinical outcome in oxaliplatin-based chemotherapy. Cancer Manag Res 2018,11,285-297. (PMID: 10.2147/CMAR.S18192230643454)
Grant Information: CPAYLJ202003 Chinese Pharmaceutical Association-Yiling Pharmaceutical Innovation Fund; XB202010 Key Research Fund of Tianjin Project & Team; 20YFZCSY00450 Key Research and Development Program of Tianjin; 22JCYBJC01230 Key Program of Natural Science Fund of Tianjin Commissioner Fund; J230015 Special Foundation for the Beijing-Tianjin-Hebei Basic Research Program
Contributed Indexing: Keywords: Ovarian cancer; heterogeneous malignancy.; oxidative stress; platinum resistance; prognostic risk score model; werner syndrome helicase
Substance Nomenclature: 0 (Platinum Compounds)
0 (Antineoplastic Agents)
Entry Date(s): Date Created: 20240517 Date Completed: 20250306 Latest Revision: 20250306
Update Code: 20250307
DOI: 10.2174/0115748928311077240424065832
PMID: 38756073
Databáza: MEDLINE
Popis
Abstrakt:Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum- resistant OC patients.<br />Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments.<br />Results: Three gene sets associated with oxidative stress-related pathways were enriched (p &lt; 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p &lt; 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p &lt; 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells.<br />Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.<br /> (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
ISSN:2212-3970
DOI:10.2174/0115748928311077240424065832