Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice.
Gespeichert in:
| Titel: | Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice. |
|---|---|
| Autoren: | Dwivedi N; Biology Department, Brookhaven Nation Laboratory, Upton, New York, USA.; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA., Yamamoto S; Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan., Zhao Y; Biology Department, Brookhaven Nation Laboratory, Upton, New York, USA., Hou G; Dewel Microscopy Facility, Appalachian State University, Boone, North Carolina, USA., Bowling F; Biology Department, Brookhaven Nation Laboratory, Upton, New York, USA., Tobimatsu Y; Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan., Liu CJ; Biology Department, Brookhaven Nation Laboratory, Upton, New York, USA.; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA. |
| Quelle: | Plant biotechnology journal [Plant Biotechnol J] 2024 Feb; Vol. 22 (2), pp. 330-346. Date of Electronic Publication: 2023 Oct 05. |
| Publikationsart: | Journal Article |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists Country of Publication: England NLM ID: 101201889 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-7652 (Electronic) Linking ISSN: 14677644 NLM ISO Abbreviation: Plant Biotechnol J Subsets: MEDLINE |
| Imprint Name(s): | Publication: 2014- : Oxford Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists Original Publication: [Oxford] : Blackwell Pub., c2003- |
| MeSH-Schlagworte: | Methyltransferases*/genetics , Methyltransferases*/metabolism , Oryza*/genetics , Oryza*/metabolism, Lignin/metabolism ; Flavonoids/metabolism ; Cell Wall/metabolism |
| Abstract: | Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 μmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 μmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals. (© 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.) |
| References: | Plant Physiol. 2017 Jan;173(1):240-255. (PMID: 27246096) Plant Cell. 2004 Feb;16(2):544-54. (PMID: 14729911) J Biol Chem. 2015 Oct 30;290(44):26715-24. (PMID: 26378240) Biotechnol Biofuels. 2020 Dec 10;13(1):202. (PMID: 33303001) Plant Cell. 2012 Jul;24(7):3135-52. (PMID: 22851762) New Phytol. 2018 Apr;218(1):81-93. (PMID: 29315591) Sci Adv. 2016 Oct 14;2(10):e1600393. (PMID: 27757415) J Vis Exp. 2010 Mar 11;(37):. (PMID: 20224547) Curr Opin Biotechnol. 2019 Apr;56:75-81. (PMID: 30359808) BMC Biotechnol. 2018 Sep 4;18(1):54. (PMID: 30180895) Nat Plants. 2021 Sep;7(9):1288-1300. (PMID: 34354261) Plant J. 2021 Nov;108(3):752-765. (PMID: 34403547) Plant Physiol. 2018 Jun;177(2):513-521. (PMID: 29724771) Front Plant Sci. 2021 Aug 26;12:733198. (PMID: 34512707) Polymers (Basel). 2018 Aug 15;10(8):. (PMID: 30960841) J Agric Food Chem. 2019 Nov 20;67(46):12962-12971. (PMID: 31644281) Curr Opin Biotechnol. 2019 Apr;56:240-249. (PMID: 30921563) Plant J. 2016 Dec;88(6):1046-1057. (PMID: 27553717) J Agric Food Chem. 2001 Nov;49(11):5122-9. (PMID: 11714291) Plant Biotechnol J. 2015 Dec;13(9):1224-32. (PMID: 25417596) J Agric Food Chem. 2012 Jun 13;60(23):5922-35. (PMID: 22607527) J Biol Chem. 2010 Jan 1;285(1):277-85. (PMID: 19875443) Plant J. 2014 Mar;77(5):713-26. (PMID: 24372757) Plant Physiol. 2022 Nov 28;190(4):2155-2172. (PMID: 36149320) Front Plant Sci. 2017 Jan 18;7:2056. (PMID: 28149301) Plant Physiol. 2013 Apr;161(4):1615-33. (PMID: 23391577) Curr Opin Biotechnol. 2019 Apr;56:223-229. (PMID: 30909119) C R Biol. 2004 May;327(5):467-79. (PMID: 15255477) Plant Physiol. 2010 Jul;153(3):895-905. (PMID: 20472751) Curr Opin Biotechnol. 2019 Apr;56:202-208. (PMID: 30677701) Phytochemistry. 2006 Feb;67(4):387-94. (PMID: 16412485) Plant Biotechnol J. 2012 Jun;10(5):609-20. (PMID: 22458713) Nat Commun. 2016 Jun 28;7:11989. (PMID: 27349324) Biotech Histochem. 2018;93(4):258-266. (PMID: 29611720) Sci Adv. 2023 Jan 13;9(2):eade4389. (PMID: 36630494) New Phytol. 2020 Sep;227(6):1649-1667. (PMID: 32285456) New Phytol. 2020 May;226(4):1074-1087. (PMID: 31909485) Sci Rep. 2019 Aug 12;9(1):11597. (PMID: 31406182) Plant Physiol. 2018 Jan;176(1):611-633. (PMID: 29158331) Nat Biotechnol. 2007 Jul;25(7):759-61. (PMID: 17572667) PLoS One. 2017 Jun 8;12(6):e0178160. (PMID: 28594846) Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60. (PMID: 10430877) Curr Biol. 2007 Feb 20;17(4):R115-9. (PMID: 17307040) Plant Physiol. 2015 Apr;167(4):1284-95. (PMID: 25667313) Nat Protoc. 2006;1(6):2796-802. (PMID: 17406537) Plant Physiol. 2009 Jun;150(2):621-35. (PMID: 19386808) Mol Plant. 2020 Nov 2;13(11):1644-1653. (PMID: 32810599) Plant J. 2001 Jan;25(2):193-202. (PMID: 11169195) Plant Cell Environ. 2020 Sep;43(9):2172-2191. (PMID: 32441772) Org Biomol Chem. 2010 Feb 7;8(3):576-91. (PMID: 20090974) J Biol Chem. 2012 Mar 9;287(11):8347-55. (PMID: 22267741) Nat Protoc. 2012 Sep;7(9):1579-89. (PMID: 22864199) Plant Physiol. 2016 Jun;171(2):810-20. (PMID: 27208246) Plant Cell Physiol. 2017 Feb 1;58(2):240-255. (PMID: 28013276) Plant Physiol. 2022 Mar 28;188(4):1993-2011. (PMID: 34963002) J Agric Food Chem. 2013 Nov 20;61(46):10848-57. (PMID: 24143908) Plant Biotechnol J. 2014 Dec;12(9):1154-62. (PMID: 25209835) J Agric Food Chem. 2004 Oct 20;52(21):6496-502. (PMID: 15479013) Rice (N Y). 2023 Feb 27;16(1):10. (PMID: 36847882) Transgenic Res. 2001 Oct;10(5):457-64. (PMID: 11708655) Plant Physiol. 2017 Jun;174(2):972-985. (PMID: 28385728) Curr Opin Biotechnol. 2005 Aug;16(4):407-15. (PMID: 16023847) Sci Rep. 2017 Mar 06;7:43397. (PMID: 28262713) J Vis Exp. 2010 Mar 12;(37):. (PMID: 20228730) |
| Grant Information: | JP20H03044 Japan Society for the Promotion of Science; JP 22J13457 Japan Society for the Promotion of Science; DE-AC02-05CH11231 U.S. Department of Energy; DE-C0018420 U.S. Department of Energy; DE-SC0012704 U.S. Department of Energy |
| Contributed Indexing: | Keywords: 4-O-methylated ferulic acid; Monolignol 4-O-methyltransferase; lignin; saccharification; tricin; wall-bound phenolics |
| Substance Nomenclature: | EC 2.1.1.- (Methyltransferases) D51JZL38TQ (tricin) 9005-53-2 (Lignin) 0 (Flavonoids) |
| Entry Date(s): | Date Created: 20231005 Date Completed: 20240131 Latest Revision: 20241023 |
| Update Code: | 20250114 |
| PubMed Central ID: | PMC10826995 |
| DOI: | 10.1111/pbi.14186 |
| PMID: | 37795899 |
| Datenbank: | MEDLINE |
| Abstract: | Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 μmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 μmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals.<br /> (© 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.) |
|---|---|
| ISSN: | 1467-7652 |
| DOI: | 10.1111/pbi.14186 |
Full Text Finder
Nájsť tento článok vo Web of Science