Synthetic Morphogenesis: introducing IEEE journal readers to programming living mammalian cells to make structures.

Saved in:
Bibliographic Details
Title: Synthetic Morphogenesis: introducing IEEE journal readers to programming living mammalian cells to make structures.
Authors: Davies JA; Professor of Experimental Anatomy at the University of Edinburgh, UK, and a member of the Centre for Mammalian Synthetic Biology at that University.
Source: Proceedings of the IEEE. Institute of Electrical and Electronics Engineers [Proc IEEE Inst Electr Electron Eng] 2022 May; Vol. 110 (5), pp. 688-707.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Institute of Electrical and Electronics Engineers Country of Publication: United States NLM ID: 9879073 Publication Model: Print Cited Medium: Print ISSN: 0018-9219 (Print) Linking ISSN: 00189219 NLM ISO Abbreviation: Proc IEEE Inst Electr Electron Eng Subsets: PubMed not MEDLINE
Imprint Name(s): Original Publication: [New York, N.Y.] : Institute of Electrical and Electronics Engineers, [1963-
Abstract: Synthetic morphogenesis is a new engineering discipline, in which cells are genetically engineered to make designed shapes and structures. At least in this early phase of the field, devices tend to make use of natural shape-generating processes that operate in embryonic development, but invoke them artificially at times and in orders of a technologist's choosing. This requires construction of genetic control, sequencing and feedback systems that have close parallels to electronic design, which is one reason the field may be of interest to readers of IEEE journals. The other reason is that synthetic morphogenesis allows the construction of two-way interfaces, especially opto-genetic and opto-electronic, between the living and the electronic, allowing unprecedented information flow and control between the two types of 'machine'. This review introduces synthetic morphogenesis, illustrates what has been achieved, drawing parallels wherever possible between biology and electronics, and looks forward to likely next steps and challenges to be overcome.
References: Annu Rev Cell Dev Biol. 2018 Oct 6;34:311-332. (PMID: 30089222)
Sci Rep. 2018 Oct 9;8(1):15024. (PMID: 30301909)
J Cell Biol. 1988 Dec;107(6 Pt 1):2401-8. (PMID: 3058723)
Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212-6. (PMID: 1063404)
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):. (PMID: 28246188)
Wiley Interdiscip Rev Dev Biol. 2012 Jan-Feb;1(1):3-15. (PMID: 23801664)
Cell. 2022 Mar 17;185(6):967-979.e12. (PMID: 35235768)
J Cell Sci. 2020 Jan 29;133(2):. (PMID: 31996398)
J Anat. 2008 Jun;212(6):707-19. (PMID: 18510501)
Ann N Y Acad Sci. 2020 Apr;1466(1):17-23. (PMID: 30767234)
Biochem Soc Trans. 2020 Feb 28;48(1):113-122. (PMID: 32077472)
Bioessays. 2012 Mar;34(3):205-17. (PMID: 22237730)
J Membr Biol. 1983;73(2):177-84. (PMID: 6864774)
Dev Biol. 2005 Feb 1;278(1):255-63. (PMID: 15649477)
Int J Mol Sci. 2021 May 18;22(10):. (PMID: 34069904)
Bull Math Biol. 1990;52(1-2):153-97; discussion 119-52. (PMID: 2185858)
Sci Rep. 2016 Dec 16;6:39178. (PMID: 27982133)
Cell. 2016 Apr 21;165(3):620-30. (PMID: 27104979)
Elife. 2016 May 17;5:. (PMID: 27187149)
Nat Cell Biol. 2020 Sep;22(9):1033-1041. (PMID: 32884148)
Semin Reprod Med. 2000;18(1):41-9. (PMID: 11299518)
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1):. (PMID: 28906063)
Nat Rev Mol Cell Biol. 2012 Jan 23;13(2):103-14. (PMID: 22266760)
Curr Biol. 2003 Dec 16;13(24):2125-37. (PMID: 14680628)
Curr Opin Cell Biol. 2003 Dec;15(6):747-52. (PMID: 14644201)
Development. 2022 Jun 15;149(12):. (PMID: 35616331)
Integr Biol (Camb). 2011 Feb;3(2):109-18. (PMID: 21246151)
Arq Bras Endocrinol Metabol. 2005 Feb;49(1):26-36. (PMID: 16544032)
Cold Spring Harb Perspect Biol. 2016 Sep 01;8(9):. (PMID: 27270296)
Biol Open. 2014 Aug 29;3(9):850-60. (PMID: 25171888)
Ann Surg. 2007 Nov;246(5):896-902. (PMID: 17968184)
mBio. 2018 May 22;9(3):. (PMID: 29789364)
Ann N Y Acad Sci. 2006 Apr;1068:1-13. (PMID: 16831900)
Curr Opin Cell Biol. 2008 Dec;20(6):638-46. (PMID: 18955139)
Dev Biol. 1995 Jul;170(1):102-14. (PMID: 7601301)
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031908. (PMID: 19391972)
Methods Mol Biol. 2011;692:235-49. (PMID: 21031316)
Biochem Soc Trans. 2016 Jun 15;44(3):696-701. (PMID: 27284030)
Science. 2016 Dec 9;354(6317):1296-1301. (PMID: 27940875)
ACS Synth Biol. 2021 Jun 18;10(6):1465-1480. (PMID: 34019395)
J Mol Biol. 2020 May 1;432(10):3137-3148. (PMID: 32247761)
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51. (PMID: 1319065)
Nat Commun. 2020 Mar 13;11(1):1355. (PMID: 32170129)
Life (Basel). 2019 Jan 07;9(1):. (PMID: 30621107)
Science. 2020 Oct 16;370(6514):321-327. (PMID: 33060356)
Nat Biotechnol. 2010 Apr;28(4):355-60. (PMID: 20351688)
Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):206-9. (PMID: 8278366)
Methods Mol Biol. 2005;308:123-43. (PMID: 16082031)
Cell Mol Life Sci. 2011 Jun;68(11):1897-910. (PMID: 21437644)
Trends Neurosci. 1997 Nov;20(11):510-7. (PMID: 9364665)
Cell Signal. 2014 Mar;26(3):570-9. (PMID: 24308963)
Sci Rep. 2016 Feb 09;6:20664. (PMID: 26857385)
Nature. 2011 Aug 03;476(7358):57-62. (PMID: 21814276)
Development. 2021 May 15;148(10):. (PMID: 33999994)
Trends Cell Biol. 2012 Apr;22(4):193-200. (PMID: 22321291)
Science. 2018 Jul 13;361(6398):156-162. (PMID: 29853554)
Trends Plant Sci. 2013 Jul;18(7):393-401. (PMID: 23562459)
Mol Biosyst. 2014 Jul;10(7):1679-88. (PMID: 24469598)
Science. 2018 May 4;360(6388):543-548. (PMID: 29622726)
J Exp Bot. 2019 Jul 23;70(14):3495-3506. (PMID: 30976802)
Development. 2019 Nov 15;146(22):. (PMID: 31666235)
ACS Synth Biol. 2013 Feb 15;2(2):72-82. (PMID: 23526588)
Nature. 2019 Jun;570(7762):533-537. (PMID: 31217585)
Science. 1963 Aug 2;141(3579):401-8. (PMID: 13983728)
New Phytol. 2021 Mar;229(6):3108-3115. (PMID: 33064858)
J Biol Eng. 2014 Nov 19;8(1):26. (PMID: 25478005)
Nat Cell Biol. 2002 Nov;4(11):907-12. (PMID: 12402048)
J Cell Biol. 2016 Dec 19;215(6):769-778. (PMID: 27903609)
Curr Opin Genet Dev. 2007 Aug;17(4):281-6. (PMID: 17624758)
Nat Commun. 2018 Dec 21;9(1):5456. (PMID: 30575724)
Curr Opin Genet Dev. 2018 Aug;51:111-119. (PMID: 30390520)
Curr Opin Cell Biol. 2001 Oct;13(5):555-62. (PMID: 11544023)
Nature. 2013 Apr 25;496(7446):528-32. (PMID: 23575629)
F1000Res. 2020 Feb 26;9:. (PMID: 32148779)
Genet Mol Res. 2003 Mar 31;2(1):92-101. (PMID: 12917805)
Grant Information: BB/M018040/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Contributed Indexing: Keywords: Biomedical engineering; Circuits and systems; Construction; Electrooptics; Synthetic biology
Entry Date(s): Date Created: 20230102 Latest Revision: 20250530
Update Code: 20250530
PubMed Central ID: PMC7614003
DOI: 10.1109/JPROC.2021.3137077
PMID: 36590991
Database: MEDLINE
Description
Abstract:Synthetic morphogenesis is a new engineering discipline, in which cells are genetically engineered to make designed shapes and structures. At least in this early phase of the field, devices tend to make use of natural shape-generating processes that operate in embryonic development, but invoke them artificially at times and in orders of a technologist's choosing. This requires construction of genetic control, sequencing and feedback systems that have close parallels to electronic design, which is one reason the field may be of interest to readers of IEEE journals. The other reason is that synthetic morphogenesis allows the construction of two-way interfaces, especially opto-genetic and opto-electronic, between the living and the electronic, allowing unprecedented information flow and control between the two types of 'machine'. This review introduces synthetic morphogenesis, illustrates what has been achieved, drawing parallels wherever possible between biology and electronics, and looks forward to likely next steps and challenges to be overcome.
ISSN:0018-9219
DOI:10.1109/JPROC.2021.3137077