A review on design of scaffold for osteoinduction: Toward the unification of independent design variables.
Uložené v:
| Názov: | A review on design of scaffold for osteoinduction: Toward the unification of independent design variables. |
|---|---|
| Autori: | Chauhan A; Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India. rme1705@mnnit.ac.in., Bhatt AD; Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India. |
| Zdroj: | Biomechanics and modeling in mechanobiology [Biomech Model Mechanobiol] 2023 Feb; Vol. 22 (1), pp. 1-21. Date of Electronic Publication: 2022 Sep 19. |
| Spôsob vydávania: | Journal Article; Review |
| Jazyk: | English |
| Informácie o časopise: | Publisher: Springer Country of Publication: Germany NLM ID: 101135325 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1617-7940 (Electronic) Linking ISSN: 16177940 NLM ISO Abbreviation: Biomech Model Mechanobiol Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Berlin ; New York : Springer, c2002- |
| Výrazy zo slovníka MeSH: | Bone Regeneration* , Fractures, Bone*, Humans ; Bone and Bones ; Algorithms ; Porosity |
| Abstrakt: | Biophysical stimulus quantifies the osteoinductivity of the scaffold concerning the mechanoregulatory mathematical models of scaffold-assisted cellular differentiation. Consider a set of independent structural variables ($) that comprises bulk porosity levels ([Formula: see text]) and a set of morphological features of the micro-structure ([Formula: see text]) associated with scaffolds, i.e., [Formula: see text]. The literature suggests that biophysical stimulus ([Formula: see text]) is a function of independent structural variables ($). Limited understanding of the functional correlation between biophysical stimulus and structural features results in the lack of the desired osteoinductivity in a scaffold. Consequently, it limits their broad applicability to assist bone tissue regeneration for treating critical-sized bone fractures. The literature indicates the existence of multi-dimensional independent design variable space as a probable reason for the general lack of osteoinductivity in scaffolds. For instance, known morphological features are the size, shape, orientation, continuity, and connectivity of the porous regions in the scaffold. It implies that the number of independent variables ([Formula: see text]) is more than two, i.e., [Formula: see text], which interact and influence the magnitude of [Formula: see text] in a unified manner. The efficiency of standard engineering design procedures to analyze the correlation between dependent variable ([Formula: see text]) and independent variables ($) in 3D mutually orthogonal Cartesian coordinate system diminishes proportionally with the increase in the number of independent variables ([Formula: see text]) (Deb in Optimization for engineering design-algorithms and examples, PHI Learning Private Limited, New Delhi, 2012). Therefore, there is an immediate need to devise a framework that has the potential to quantify the micro-structural's morphological features in a unified manner to increase the prospects of scaffold-assisted bone tissue regeneration. (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
| References: | Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S (2020) Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 24(2):1–16. https://doi.org/10.1186/s40824-019-0180-z. (PMID: 10.1186/s40824-019-0180-z) Akilbekova D, Shaimerdenova M, Adilov S, Berillo D (2018) Biocompatible scaffolds based on natural polymers for regenerative medicine. Int J Biol Macromol 114:324–333. https://doi.org/10.1016/j.ijbiomac.2018.03.116. (PMID: 10.1016/j.ijbiomac.2018.03.116) Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101. https://doi.org/10.1007/s005860100282. (PMID: 10.1007/s005860100282) Augut P, Hollensteiner M, von Rüden C (2021) The role of mechanical stimulation in the enhancement of bone healing. Injury 52(S2):578–583. https://doi.org/10.1016/j.injury.2020.10.009. (PMID: 10.1016/j.injury.2020.10.009) Barba D, Alabort E, Reed RC (2019) Synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656. https://doi.org/10.1016/j.actbio.2019.07.049. (PMID: 10.1016/j.actbio.2019.07.049) Battafarano G, Rossi M, Martino VD, Marampon F, Borro L, Secinaro A, Fattore AD (2021) Strategies for bone regeneration: from grafts to tissue engineering. Int J Mol Sci 22(1128):1–22. https://doi.org/10.3390/ijms22031128. (PMID: 10.3390/ijms22031128) Bitar KN, Zakhem E (2014) Design strategies for biodegradable scaffolds for tissue regeneration. Biomed Eng Comput Biol 6:13–20. https://doi.org/10.4137/BECB.S10961. (PMID: 10.4137/BECB.S10961) Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G (2016) A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int J Biol Sci 12(1):1–17. https://doi.org/10.7150/ijbs.13158. (PMID: 10.7150/ijbs.13158) Boccaccio A, Uva AE, Fiorentino M, Monno G, Ballini A, Desiate A (2018) Optimal load for bone tissue scaffolds with an assigned geometry. Int J Med Sci 15(1):16–22. https://doi.org/10.7150/ijms.20522. (PMID: 10.7150/ijms.20522) Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615. https://doi.org/10.1016/j.bone.2007.12.224. (PMID: 10.1016/j.bone.2007.12.224) Bower AF (2010) Applied mechanics of solids. CRC Press Taylor & Francis Group, Baco Raton. Brennan CM, Eichholz KF, Hoey DA (2019) The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Biomed Mater 14(065016):1–13. https://doi.org/10.1088/1748-605X/ab49f2. (PMID: 10.1088/1748-605X/ab49f2) Breuls RGM, Jiya TU, Smit TH (2008) Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. The Open Orthop J 2:103–109. https://doi.org/10.2174/1874325000802010103. (PMID: 10.2174/1874325000802010103) Budynas RG, Nisbett JK (2015) Shigley’s mechanical engineering design, 10th edn. McGraw-Hill Education, New York. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554. https://doi.org/10.1016/j.biomaterials.2007.09.003. (PMID: 10.1016/j.biomaterials.2007.09.003) Carlson KJ (2005) Investigating the form-function interface in African apes: relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Am J Phys Anthropol 127(3):312–334. https://doi.org/10.1002/ajpa.20124. (PMID: 10.1002/ajpa.20124) Carter DR, Beaupre GS (2001) Skeletal function and form (mechanobiology of skeletal development, aging, and regeneration). Cambridge University Press, Cambridge. Carter DR, Blenman PR, Beaupré GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5):736–748. https://doi.org/10.1002/jor.1100060517. (PMID: 10.1002/jor.1100060517) Carter DR, Beaupré GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355(Suppl):S41–S55. https://doi.org/10.1097/00003086-199810001-00006. (PMID: 10.1097/00003086-199810001-00006) Catros S, Zwetyenga N, Bareille R, Brouilland B, Renard M, Amédée J, Fricain JC (2009) Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo. J Orthop Res 27(2):155–161. https://doi.org/10.1002/jor.20738. (PMID: 10.1002/jor.20738) Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37(1):129–145. https://doi.org/10.1007/s10439-008-9594-9. (PMID: 10.1007/s10439-008-9594-9) Chen Y, Zhou S, Li Q (2011) Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 32:5003–5014. https://doi.org/10.1016/j.biomaterials.2011.03.064. (PMID: 10.1016/j.biomaterials.2011.03.064) Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J (2020) Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol 8(609):1–20. https://doi.org/10.3389/fbioe.2020.00609. (PMID: 10.3389/fbioe.2020.00609) Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, Cai Y, Zhu X, Yang H, Li B (2019) Substrate stiffness and topography dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-assisted protein. Acta Biomater 92:254–264. https://doi.org/10.1016/j.actbio.2019.05.013. (PMID: 10.1016/j.actbio.2019.05.013) Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266. https://doi.org/10.1016/S0021-990(98)00153-5. (PMID: 10.1016/S0021-990(98)00153-5) Coathup MJ, Hing KA, Samizadeh S, Chan O, Fang YS, Campion C, Buckland T, Blunn GW (2012) Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A 100(6):1550–1555. https://doi.org/10.1002/jbm.a.34094. (PMID: 10.1002/jbm.a.34094) Davis H (1867) Conservative surgery. Appleton & Co., New York. Deb K (2012) Optimization for engineering design—algorithms and examples, 2nd edn. PHI Learning Private Limited, New Delhi. Eichinger JF, Haeusel LJ, Paukner D, Aydin RC, Humphrey JD, Cyron CJ (2021) Mechanical homeostasis in tissue equivalents: a review. Biomech Model Mechanobiol 20:833–850. https://doi.org/10.1007/s10237-021-01433-9. (PMID: 10.1007/s10237-021-01433-9) Eltom A, Zhong G, Muhammad A (2019) Scaffolds techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019(3429527):1–13. https://doi.org/10.1155/2019/3429527. (PMID: 10.1155/2019/3429527) Fang Z, Yan C, Sun W, Shokoufandeh A, Regli W (2005) Homogenization of heterogeneous tissue scaffold: a comparison of mechanics, asymptotic homogenization, and finite element approach. ABBI 2(1):17–29. https://doi.org/10.1533/abbi.2004.0002. (PMID: 10.1533/abbi.2004.0002) Fernández MP, Black C, Dawson J, Gibbs D, Kanczler J, Oreffo ROC, Tozzi G (2020) Exploratory full-field strain analysis of regenerated bone tissue from osteoinductive biomaterials. Materials 13(168):1–16. https://doi.org/10.3390/ma13010168. (PMID: 10.3390/ma13010168) Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: present, past and future. Proc r Soc A 466:2495–2516. https://doi.org/10.1098/rspa.2010.0215. (PMID: 10.1098/rspa.2010.0215) Frost HM (1987) Bone “mass” and “mechanostat”: a proposal. Anat Rec 219(1):1–9. https://doi.org/10.1002/ar.1092190104. (PMID: 10.1002/ar.1092190104) García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblare M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40:1467–1476. https://doi.org/10.1016/j.jbiomech.2006.06.013. (PMID: 10.1016/j.jbiomech.2006.06.013) Geris L, Sloten JV, Oosteruoyck HV (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for study of the non-unions. Biomech Model Mechanobiol 9:713–724. https://doi.org/10.1007/s10237-010-0208-8. (PMID: 10.1007/s10237-010-0208-8) Ghiasi MS, Chen J, Vaziri A, Rofriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Reports 6:87–100. https://doi.org/10.1016/j.bonr.2017.03.002. (PMID: 10.1016/j.bonr.2017.03.002) Ghimre S, Miramini S, Edwards G, Rotne R, Xu J, Ebeling ZL (2021) The investigation of bone fracture healing under the intramembraneous and endochondral ossification. Bone Rep 14(100740):1–11. https://doi.org/10.1016/j.bonr.2020.100740. (PMID: 10.1016/j.bonr.2020.100740) Gomes ME, Holtorf HL, Reis RL, Mikos AG (2006) Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 12(4):801–809. https://doi.org/10.1089/ten.2006.12.801. (PMID: 10.1089/ten.2006.12.801) Gómez-Benito MJ, Garcìa-Aznar JM, Kuiper JH (2005) Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. Jtheor Biol 235:105–119. https://doi.org/10.1016/j.jtbi.2004.12.023. (PMID: 10.1016/j.jtbi.2004.12.023) Gupte MJ, Swanson WB, Hu J, Jin X, Ma H, Zhang Z, Li Z, Feng K, Feng G, Xiao G, Hatch N, Mishina Y, Ma PX (2018) Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 82:1–11. https://doi.org/10.1016/j.actbio.2018.10.016. (PMID: 10.1016/j.actbio.2018.10.016) Habibovic P, Yuan H, Doel MVD, Sees TM, van Blitterswijk CA, de Groot K (2005) Relevance of osteoinductive biomaterials in critical-sized orthotropic defect. J Orthop Res 24(5):867–876. https://doi.org/10.1002/jor.20115. (PMID: 10.1002/jor.20115) Han Y, Lian M, Wu Q, Qiao Z, Sun B, Dai K (2021) Effect of pore size on cell behavior using melt electrowritten scaffolds. Front Bioeng Biotechnol 9:1–13. https://doi.org/10.3389/fbioe.2021.629270. (PMID: 10.3389/fbioe.2021.629270) Hedyati R, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA (2017) Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells. Appl Math Model 46:408–422. https://doi.org/10.1016/j.apm.2017.01.076. (PMID: 10.1016/j.apm.2017.01.076) Hendrikson WJ, van Blitterswijk CA, Verdonschot N, Moroni L, Rouwkema J (2014) Modeling mechanical signals on the surface of μCT and CAD based rapid prototype scaffold models to predict (early stage) tissue development. Biotechnol Bioeng 111(9):1864–1875. https://doi.org/10.1002/bit.25231. (PMID: 10.1002/bit.25231) Hendrikson WJ, Deegan AJ, Yang Y, van Blitterswijk CA, Verdonschot N, Moroni L, Rouwkema J (2017) Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front Bioeng Biotechnol 5(6):1–11. https://doi.org/10.3389/fbioe.2017.00006. (PMID: 10.3389/fbioe.2017.00006) Henkel J, Woodruff MA, Epari R, Steck R, Glatt V, Dickinson CC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 3:216–248. https://doi.org/10.4248/BR201303002. (PMID: 10.4248/BR201303002) Herath B, Suresh S, Downing D, Cometta S, Tino R, Castro NJ, Leary M, Schmutz B, Wille ML, Hutchmacher DW (2021) Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects. Mater Des 212:1–13. https://doi.org/10.1016/j.matdes.2021.110224. (PMID: 10.1016/j.matdes.2021.110224) Huang Y, Niu X, Song W, Guan C, Feng Q, Fan Y (2013) Combined effects of mechanical strain and hydroxyapatite/collagen composite on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. J Nanomater 343909:1–7. https://doi.org/10.1155/2013/343909. (PMID: 10.1155/2013/343909) Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197(2):145–156. https://doi.org/10.1046/j.1469-7580.2000.19720145.x. (PMID: 10.1046/j.1469-7580.2000.19720145.x) Huiskes R, Van Driel WD, Prendergast PJ, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8(12):785–788. https://doi.org/10.1023/a:1018520914512. (PMID: 10.1023/a:1018520914512) Ignatius A, Blessings H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318. https://doi.org/10.1016/j.biomaterials.2004.02.045. (PMID: 10.1016/j.biomaterials.2004.02.045) Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39:1507–1516. https://doi.org/10.1016/j.jbiomech.2005.01.037. (PMID: 10.1016/j.jbiomech.2005.01.037) Isaksson H, Comas O, van Donkelaar CC, Mediavilla J, Wilson W, Huiskes R, Ito K (2007) Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech 40:2002–2011. https://doi.org/10.1016/j.jbiomech.2006.09.028. (PMID: 10.1016/j.jbiomech.2006.09.028) Ji S, Gu Q, Xia B (2006) Porosity dependence of mechanical properties of solid materials. J MATER SCI 41:1757–1768. https://doi.org/10.1007/s10853-006-2871-9. (PMID: 10.1007/s10853-006-2871-9) Jiang S, Lyu C, Zhao P, Li W, Kong W, Huang C, Genin GM, Du Y (2019) Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat Commun 10(3491):1–14. https://doi.org/10.1038/s41467-019-11397-1. (PMID: 10.1038/s41467-019-11397-1) Jungreuthmayer C, Donahue SW, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ, O’Brien FJ (2009) A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng Part A 15(5):1–10. https://doi.org/10.1089/ten.tea.2008.0204. (PMID: 10.1089/ten.tea.2008.0204) Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W (2008) Porosity and pore size of b-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 4:1904–1915. https://doi.org/10.1016/j.actbio.2008.05.017. (PMID: 10.1016/j.actbio.2008.05.017) Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater. https://doi.org/10.1038/s41578-020-0204-2. (PMID: 10.1038/s41578-020-0204-2) Kuiper JH, Richardson JB, Ashton BA (1996) Mechanical signals in early fracture callus. In: Vander Sloten J, Lowet G, Van Audekercke R, Van der Perre G (eds) Proceedings of the 10th conference of the European society of biomechanics, 1996:154. Kuiper JH, Ashton BA, Richardson JB (2000a) Computer simulation of fracture callus formation and stiffness restoration. In: Prendergast PJ, Lee TC, Carr AJ (eds) Proceedings of the 12th conference of the European society of biomechanics 2000a. Kuiper JH, Richardson JB, Ashton BA (2000b) Computer simulation to study the effect of fracture site movement on tissue formation and fracture stiffness restoration. In: European congress on computational methods in applied sciences and engineering ECCOMAS, 2000b. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163–1171. https://doi.org/10.1016/S0021-9290(02)00086-6. (PMID: 10.1016/S0021-9290(02)00086-6) Lee C, Jeong D, Yoon S, Kim J (2020) Porous three-dimensional scaffold generation for 3D printing. Mathematics 8(946):1–15. https://doi.org/10.3390/math8060946. (PMID: 10.3390/math8060946) Levy-Mishali M, Zoldan J, Levenberg S (2009) Effect of scaffold stiffness on myoblast differentiation. Tissue Eng 15(4):1–10. https://doi.org/10.1089/ten.tea.2008.0111. (PMID: 10.1089/ten.tea.2008.0111) Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR (2020) Scaffold channel size influences stem cell differentiation pathway in 3D printed silica hybrid scaffolds for cartilage regeneration. Biomater Sci 8:4458–4467. https://doi.org/10.1039/c9bm01829h. (PMID: 10.1039/c9bm01829h) Liu S, Hu C, Ren Z (2017) Bone tissue engineering: scaffolds with osteoinductivity for bone regeneration. Hindawi BioMed Res Int 2017(1038476):1. https://doi.org/10.1155/2017/1038476. (PMID: 10.1155/2017/1038476) Liu L, Shi Q, Chen Q, Li Z (2019) Mathematical modeling of bone in-growth into undegradable porous periodic scaffold under mechanical stimulus. J Tissue Eng 10:1–13. https://doi.org/10.1177/2041731419827167. (PMID: 10.1177/2041731419827167) Lu JX, Flautre B, Anselme K, Hardoun P (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10(2):111–120. https://doi.org/10.1023/a:1008973120918. (PMID: 10.1023/a:1008973120918) Luca AD, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Blitterswijk CV, Moroni L (2016) Graidients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci Rep 6(22898):1–13. https://doi.org/10.1038/srep22898. (PMID: 10.1038/srep22898) Maggi A, Li H, Greer JR (2017) Three-dimensional nano-architectured scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomater 63:294–305. https://doi.org/10.1016/j.actbio.2017.09.007. (PMID: 10.1016/j.actbio.2017.09.007) Mattei G, Ferretti C, Tirella A, Ahluwalia A, Mattioli-Belmonte M (2015) Decoupling the role of stiffness from other hydroxyapatite signaling cues in periosteal derived stem cell differentiation. Sci Rep 5(10778):1–14. https://doi.org/10.1038/srep10778. (PMID: 10.1038/srep10778) Milan JL, Planell JA, Lacroix D (2010) Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol 9:583–596. https://doi.org/10.1007/s10237-010-0199-5. (PMID: 10.1007/s10237-010-0199-5) Miramini S, Smith DW, Zhang L, Gardiner BS (2017) The spatio-temporal mechanical environment of healthy and injured human cartilage during sustained activity and its role in cartilage damage. J Mech Behav Biomed Mater 74:1–10. https://doi.org/10.1016/j.jmbbm.2017.05.018. (PMID: 10.1016/j.jmbbm.2017.05.018) Moncayo-Donoso M, Rico-Llanos GA, Garzón-Alvardo DA, Becerra J, Visser R, Fontanilla MR (2021) The effect of pore directionality of collagen scaffolds on cell differentiation and in vivo osteogenesis. Polymers 13(3187):1–19. https://doi.org/10.3390/polym13183187. (PMID: 10.3390/polym13183187) Montoya C, Du Y, Giantorcaro AL, Orrego S, Yang M, Lelkes P (2021) On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 9(12):1–16. https://doi.org/10.1038/s41413-020-00131-z. (PMID: 10.1038/s41413-020-00131-z) Moradkhani M, Vahidi B, Ahmadian B (2021) Finite element study of stem cells under fluid flow for mechanoregulation toward osteochondral cells. J Mater Sci Mater Med 32(84):1–10. https://doi.org/10.1007/s10856-021-06545-3. (PMID: 10.1007/s10856-021-06545-3) Murphy CM, O’Brien FJ, Little DG, Schindeler A (2013) Cell-scaffold interactions in the bone tissue engineering triad. Eur Cells Mater 26:120–132. https://doi.org/10.22203/eCM.v026a09. (PMID: 10.22203/eCM.v026a09) O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):1–8. https://doi.org/10.1016/S1369-7021(11)70058-X. (PMID: 10.1016/S1369-7021(11)70058-X) Oh SH, Kim TH, Im GI, Lee JH (2010) Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromol 11(8):1948–1955. https://doi.org/10.1021/bm100199m. (PMID: 10.1021/bm100199m) Olivares AL, Marsal E, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149. https://doi.org/10.1016/j.biomaterials.2009.07.041. (PMID: 10.1016/j.biomaterials.2009.07.041) Pabst W, Gregorová E (2015) Critical assessment 18: elastic and thermal properties of porous materials – rigorous bounds and cross-property relations. Mater Sci Technol 31(15):1801–1808. https://doi.org/10.1080/02670836.2015.1114697. (PMID: 10.1080/02670836.2015.1114697) Panzetta V, Fusco S, Netti PA (2019) Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proc Natl Acad Sci USA 116(44):22004–22013. https://doi.org/10.1073/pnas.1904660116. (PMID: 10.1073/pnas.1904660116) Pauwels F (1960) Eine neue theorie über den einflu mechanischer reize auf die differenzierung der stützgewebe. Z Anat Entwickl. Gesch. 121, 478–515. Translated as A new theory concerning the influence of mechanical stimuli on the differentiation of the supporting tissues. In: Maquet P, Furlong R (eds) Biomechanics of the Locomotor apparatus, 1980. Springer, Berlin, pp. 375–407. Pedrero SG, Llamas-Sillero P, Serrano-López J (2021) A multidisciplinary journey towards bone tissue engineering. Materials 14(4896):1–30. https://doi.org/10.3390/ma14174896. (PMID: 10.3390/ma14174896) Pérez MA, Prendergast PJ (2007) Random walk models of cell dispersal included in the mechanobiological simulations of tissue differentiation. J Biomech 40:2244–2253. https://doi.org/10.1016/j.jbiomech.2006.10.020. (PMID: 10.1016/j.jbiomech.2006.10.020) Perier-Metz C, Duda GN, Checa S (2020) Mechano-biological computer model of scaffold-supported bone regeneration: effect of bone graft and scaffold structure on large bone defect tissue patterning. Front Bioeng Biotechnol 8(585799):1–15. https://doi.org/10.3389/fbioe.2020.585799. (PMID: 10.3389/fbioe.2020.585799) Perier-Metz C, Duda GN, Checa S (2021) Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration- an in silico study. Biomech Model Mechanobiol 20:1723–1731. https://doi.org/10.1007/s10237-021-01472-2. (PMID: 10.1007/s10237-021-01472-2) Perren SM (1979) (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Rel Res 138:175–196. Perren SM, Cordey J (1980) The concept of interfragmentary strain. Current concepts of internal fixation of fractures. Springer-Verlarg, Berlin, pp 63–77. Persson M, Lehenkari PP, Berglin L, Turunen S, Finnilä MAJ, Risteli J, Skrifvars M, Tuukkanen J (2018) Osteogenic differentiation of human mesenchymal stem cells in a 3D Woven scaffold. Sci Rep 8(10457):1–12. https://doi.org/10.1038/s41598-018-28699-x. (PMID: 10.1038/s41598-018-28699-x) Phadke A, Hwang YS, Kim SH, Kim SH, Yamguchi T, Masuda K, Varghese S (2013) Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater 18(25):114–129. https://doi.org/10.22203/ecm/v025a08. (PMID: 10.22203/ecm/v025a08) Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 12(1824):1–42. https://doi.org/10.3390/ma12111824. (PMID: 10.3390/ma12111824) Pobloth AM, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K, Windolf M, Tatai AA, Roth CP, Schaser KD, Duda GN, Schwabe P (2018) Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med 10(423):1–17. https://doi.org/10.1126/scitranslmed.aam8828. (PMID: 10.1126/scitranslmed.aam8828) Prendergast PJ, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548. https://doi.org/10.1016/S0021-9290(96)00140-6. (PMID: 10.1016/S0021-9290(96)00140-6) Prochor P, Gryko A (2021) Numerical analysis of the influence of porosity and pore geometry on functionality of scaffolds designated for orthopedic regenerative medicine. Materials 14(109):1–18. https://doi.org/10.3390/ma14010109. (PMID: 10.3390/ma14010109) Quyang P, Dong H, He X, Cai X, Wang Y, Li J, Li H, Jin Z (2019) Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Mater Des 183:1–14. https://doi.org/10.1016/j.matdes.2019.108151. (PMID: 10.1016/j.matdes.2019.108151) Reddy JN (1993) An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York. Refai K, Montenurro M, Brugger C, Saintier N (2019) Determination of the effective elastic properties of titanium lattice structures. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1536816. (PMID: 10.1080/15376494.2018.1536816) Reznikov N, Boughton OR, Ghouse S, Weston AE, Collinson L, Blunn GW, Jeffers JRT, Cobb JP, Stevens MM (2019) Individual response variations in scaffold guided bone regeneration are determined by independent strain and injury induced mechanism. Biomaterials 194:183–194. https://doi.org/10.1016/j.biomaterials.2018.11.026. (PMID: 10.1016/j.biomaterials.2018.11.026) Rodríguéz-Montaño ÓL, Cortés-Rodriguéz CJ, Uva AE, Fiorentino M, Gattullo M, Monno G, Boccaccio A (2018) Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. J Mech Behav Biomed Mater 83:28–45. https://doi.org/10.1016/j.jmbbm.2018.04.008. (PMID: 10.1016/j.jmbbm.2018.04.008) Roohani-Esfahani SI, Newman P, Zreiqat H (2016) Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep 6(19468):1–8. https://doi.org/10.1038/srep19468. (PMID: 10.1038/srep19468) Roosa SMM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ (2010) The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A 92(1):359–368. https://doi.org/10.1002/jbm.a.32381. (PMID: 10.1002/jbm.a.32381) Rubert M, Vetsch JR, Lehtoviita I, Sommer M, Zhao F, Studart AR, Müller R, Hofmann S (2021) Scaffold pore geometry gene regulation and bone-like tissue formation in dynamic cultures. Tissue Eng Part A 27:17–18. https://doi.org/10.1089/ten.tea.2020.0121. (PMID: 10.1089/ten.tea.2020.0121) Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone tissue regeneration inside a specific type scaffold. Biomech Model Mechanobiol 7:355–366. https://doi.org/10.1007/s10237-007-0089-7. (PMID: 10.1007/s10237-007-0089-7) Sanz-Herrera JA, Garcia-Aznar JM, Doblaré M (2009a) A mathematical approach to bone tissue engineering. Phil Trans R Soc A 367:1–26. https://doi.org/10.1098/rsta.2009.0055. (PMID: 10.1098/rsta.2009.0055) Sanz-Herrera JA, Garcia-Aznar JM, Doblaré M (2009b) On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater 5:219–229. https://doi.org/10.1016/j.actbio.2008.06.021. (PMID: 10.1016/j.actbio.2008.06.021) Shi F, Xiao D, Zhang C, Zhi W, Liu Y, Weng J (2021) The effect of macropore size of hydroxyapatite scaffolds on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regen Biomater. https://doi.org/10.1093/rb/rba050. (PMID: 10.1093/rb/rba050) Shin J, Choi Y, Kim J (2019) The Cahn-Hilliard equation with generalized mobilities in complex geometries. Hindawi Math Probl Eng 2019(1710270):1–10. https://doi.org/10.1155/2019/1710270. (PMID: 10.1155/2019/1710270) Suquet P (1997) Continuum micromechanics. Springer-Verlag Wien Newyork. Taqvi S, Roy K (2006) Influence of scaffold physical properties and stromal cells coculture on the hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 27:6024–6031. https://doi.org/10.1016/j.biomaterials.2006.05.052. (PMID: 10.1016/j.biomaterials.2006.05.052) Thomson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503:179–193. https://doi.org/10.1016/j.gene.2012.04.076. (PMID: 10.1016/j.gene.2012.04.076) Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001. (PMID: 10.1016/j.bioactmat.2017.10.001) Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269(3 pt 1):E438–E442. https://doi.org/10.1152/ajpendo.1995.269.3.E438. (PMID: 10.1152/ajpendo.1995.269.3.E438) Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth JP, Schrooten J (2012) The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater 8:2824–2834. https://doi.org/10.1016/j.actbio.2012.04.001. (PMID: 10.1016/j.actbio.2012.04.001) Verbruggen SW, Vaughan TJ, McNamara LM (2012) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 9:2735–2744. https://doi.org/10.1098/rsif.2012.0286. (PMID: 10.1098/rsif.2012.0286) Verbruggen SW, Vaughan TJ, McNamara LM (2014) Fluid flow in the osteocyte mechanical environment : a fluid-structure interaction approach. Biomech Model Mechanobiol 13(1):85–97. https://doi.org/10.1007/s10237-013-0487-y. (PMID: 10.1007/s10237-013-0487-y) Vijayvenkataraman S, Shuo Z, Fuh JYH, Lu WF (2017) Design of three-dimensional scaffolds with tunable matrix stiffness for directing stem cell linage specification: an in silico study. Bioengineering 4(66):1–11. https://doi.org/10.3390/bioengineering4030066. (PMID: 10.3390/bioengineering4030066) Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomechan Model Mechanobiol 5:1–16. https://doi.org/10.1007/s10237-005-0012-z. (PMID: 10.1007/s10237-005-0012-z) Wang M, Yang N, Wang X (2017) A review of computational models of bone fracture healing. Med Biol Eng Comput 55:1895–1914. https://doi.org/10.1007/s11517-017-1701-3. (PMID: 10.1007/s11517-017-1701-3) Wang L, Wang C, Wu S, Fan Y, Li X (2020) Influence of mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci. https://doi.org/10.1039/DOBM00269K. (PMID: 10.1039/DOBM00269K) Widmer RP, Ferguson SJ (2013) On the interrelationship of permeability and structural parameters of vertebral trabecular bone: a parametric computational study. Comput Methods Biomech Biomed Engin 16(8):908–922. https://doi.org/10.1080/10255842.2011.643787. (PMID: 10.1080/10255842.2011.643787) Wieding J, Jonitz A, Bader R (2012) The effect of structural design on the mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5:1336–1347. https://doi.org/10.3390/ma50813338. (PMID: 10.3390/ma50813338) Wilson CJ, Schuetz MA, Epari DR (2015) Effects of strain artefacts arsing from a pre-defined callus domain in models of bone healing mechanobiology. Biomech Model Mechanobiol 14:1129–1141. https://doi.org/10.1007/s10237-015-0659-z. (PMID: 10.1007/s10237-015-0659-z) Wo J, Huang S, Wu D, Zhu J, Li Z, Yuan F (2020) The integration of pore size and porosity distribution on Ti-6A1-4V scaffolds by 3D printing in the modulation of osteo-differentation. J Appl Biomater Funct Mater 18:1–10. https://doi.org/10.1177/228080002093465. (PMID: 10.1177/228080002093465) Wolf J (1892) Das Gesetz der transformation der Knochen. A Hirschwald 1:1–52. Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P, Schantz JT, Hutmacher DW (2012) Bone tissue engineering: from bench to bedside. Mater Today 15(10):430–435. https://doi.org/10.1016/S1369-7021(12)70194-3. (PMID: 10.1016/S1369-7021(12)70194-3) Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36. https://doi.org/10.1016/j,mser.2014.04.001. (PMID: 10.1016/j,mser.2014.04.001) Xie J, Peng C, Zhao Q, Wang X, Yuan H, Yan L, Li K, Lou X, Zhang Y (2016) Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater 29:365–379. https://doi.org/10.1016/j.actbio.2015.10.007. (PMID: 10.1016/j.actbio.2015.10.007) Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y (2010) The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater 6:3021–3028. https://doi.org/10.1016/j.actbio.2010.02.030. (PMID: 10.1016/j.actbio.2010.02.030) Zhang L, Miramini S, Smith DW, Gardiner BS, Grodzinsky AJ (2014) Time evolution of deformation in a human cartilage under cyclic loading. Ann Biomed Eng. https://doi.org/10.1007/s10439-014-1164-8. (PMID: 10.1007/s10439-014-1164-8) Zhao F, Vaughan TJ, Mcnamara LM (2016) Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomech Model Mechanobiol 15:561–577. https://doi.org/10.1007/s10237-015-0710-0. (PMID: 10.1007/s10237-015-0710-0) Zhao F, van Rietbergen B, Ito K, Hofmann S (2018) Flow rates in perfusion bioreactors to maximize mineralization in bone tissue engineering in vitro. J Biomech 79:232–237. https://doi.org/10.1016/j.jbiomech.2018.08.004. (PMID: 10.1016/j.jbiomech.2018.08.004) Zhao F, Lacroix D, Ito K, van Rietbergen B, Hofmann S (2020) Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Reports 12(100265):1–7. https://doi.org/10.1016/j.bonr.2020.100265. (PMID: 10.1016/j.bonr.2020.100265) Zheng L, Chen L, Chen Y, Gui J, Li Q, Huang Y, Liu M, Jia X, Song W, Ji J, Gong X, Shi R, Fan Y (2016) The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 49:572–579. https://doi.org/10.1016/j.jbiomech.2016.01.034. (PMID: 10.1016/j.jbiomech.2016.01.034) |
| Contributed Indexing: | Keywords: Bone tissue regeneration; Design; Mechanobiology; Osteoinductivity; Scaffold |
| Entry Date(s): | Date Created: 20220919 Date Completed: 20230228 Latest Revision: 20230228 |
| Update Code: | 20250114 |
| DOI: | 10.1007/s10237-022-01635-9 |
| PMID: | 36121530 |
| Databáza: | MEDLINE |
| Abstrakt: | Biophysical stimulus quantifies the osteoinductivity of the scaffold concerning the mechanoregulatory mathematical models of scaffold-assisted cellular differentiation. Consider a set of independent structural variables ($) that comprises bulk porosity levels ([Formula: see text]) and a set of morphological features of the micro-structure ([Formula: see text]) associated with scaffolds, i.e., [Formula: see text]. The literature suggests that biophysical stimulus ([Formula: see text]) is a function of independent structural variables ($). Limited understanding of the functional correlation between biophysical stimulus and structural features results in the lack of the desired osteoinductivity in a scaffold. Consequently, it limits their broad applicability to assist bone tissue regeneration for treating critical-sized bone fractures. The literature indicates the existence of multi-dimensional independent design variable space as a probable reason for the general lack of osteoinductivity in scaffolds. For instance, known morphological features are the size, shape, orientation, continuity, and connectivity of the porous regions in the scaffold. It implies that the number of independent variables ([Formula: see text]) is more than two, i.e., [Formula: see text], which interact and influence the magnitude of [Formula: see text] in a unified manner. The efficiency of standard engineering design procedures to analyze the correlation between dependent variable ([Formula: see text]) and independent variables ($) in 3D mutually orthogonal Cartesian coordinate system diminishes proportionally with the increase in the number of independent variables ([Formula: see text]) (Deb in Optimization for engineering design-algorithms and examples, PHI Learning Private Limited, New Delhi, 2012). Therefore, there is an immediate need to devise a framework that has the potential to quantify the micro-structural's morphological features in a unified manner to increase the prospects of scaffold-assisted bone tissue regeneration.<br /> (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
|---|---|
| ISSN: | 1617-7940 |
| DOI: | 10.1007/s10237-022-01635-9 |
Full Text Finder
Nájsť tento článok vo Web of Science