Human visual cortical gamma reflects natural image structure.

Uloženo v:
Podrobná bibliografie
Název: Human visual cortical gamma reflects natural image structure.
Autoři: Brunet NM; Millsaps College, Department of Psychology and Neuroscience, 1701 North State Street, Jackson, MS, 39210, USA., Fries P; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands. Electronic address: pascal.fries@esi-frankfurt.de.
Zdroj: NeuroImage [Neuroimage] 2019 Oct 15; Vol. 200, pp. 635-643. Date of Electronic Publication: 2019 Jun 24.
Způsob vydávání: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Jazyk: English
Informace o časopise: Publisher: Academic Press Country of Publication: United States NLM ID: 9215515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9572 (Electronic) Linking ISSN: 10538119 NLM ISO Abbreviation: Neuroimage Subsets: MEDLINE
Imprint Name(s): Original Publication: Orlando, FL : Academic Press, c1992-
Výrazy ze slovníku MeSH: Support Vector Machine*, Electrocorticography/*methods , Functional Neuroimaging/*methods , Gamma Rhythm/*physiology , Pattern Recognition, Visual/*physiology , Visual Cortex/*physiology, Humans ; Male ; Middle Aged
Abstrakt: Many studies have reported visual cortical gamma-band activity related to stimulus processing and cognition. Most respective studies used artificial stimuli, and the few studies that used natural stimuli disagree. Electrocorticographic (ECoG) recordings from awake macaque areas V1 and V4 found gamma to be abundant during free viewing of natural images. In contrast, a study using ECoG recordings from V1 of human patients reported that many natural images induce no gamma and concluded that it is not necessary for seeing. To reconcile these apparently disparate findings, we reanalyzed those same human ECoG data recorded during presentation of natural images. We find that the strength of gamma is positively correlated with different image-computable metrics of image structure. This holds independently of the precise metric used to quantify gamma. In fact, an average of previously used gamma metrics reflects image structure most robustly. Gamma was sufficiently diagnostic of image structure to differentiate between any possible pair of images with >70% accuracy. Thus, while gamma might be weak for some natural images, the graded strength of gamma reflects the graded degree of image structure, and thereby conveys functionally relevant stimulus properties.
(Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.)
References: Neuropsychologia. 2016 Mar;83:14-28. (PMID: 26212070)
Nat Neurosci. 2005 Dec;8(12):1647-50. (PMID: 16306892)
J Microsc. 1997 Dec;188(Pt 3):264-72. (PMID: 9450330)
Front Syst Neurosci. 2016 Apr 25;10:35. (PMID: 27199684)
Neuroimage. 2006 Feb 1;29(3):764-73. (PMID: 16216533)
J Vis. 2017 Oct 1;17(12):12. (PMID: 29053781)
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12699-704. (PMID: 9356513)
J Neurosci. 2008 Mar 5;28(10):2667-79. (PMID: 18322110)
J Neurosci. 2012 Oct 24;32(43):14915-20. (PMID: 23100414)
Neuron. 2013 May 8;78(3):523-36. (PMID: 23664617)
Trends Cogn Sci. 2005 Oct;9(10):474-80. (PMID: 16150631)
Cereb Cortex. 2015 Apr;25(4):918-26. (PMID: 24108806)
Comput Intell Neurosci. 2011;2011:156869. (PMID: 21253357)
J Neurosci. 2002 May 1;22(9):3739-54. (PMID: 11978850)
Neuron. 2012 Sep 6;75(5):875-88. (PMID: 22958827)
Neuron. 2010 Sep 9;67(5):885-96. (PMID: 20826318)
Eur J Neurosci. 2004 Jul;20(2):587-92. (PMID: 15233769)
Cytometry. 2000 Jan 1;39(1):1-9. (PMID: 10655557)
J Neurosci. 2013 Jan 2;33(1):17-25. (PMID: 23283318)
Elife. 2019 Feb 04;8:. (PMID: 30714900)
Cereb Cortex. 2000 Nov;10(11):1105-16. (PMID: 11053231)
Eur J Neurosci. 2008 Aug;28(3):447-59. (PMID: 18702717)
Neuron. 2008 May 8;58(3):303-5. (PMID: 18466741)
Elife. 2017 Aug 31;6:. (PMID: 28857743)
Neuroimage. 2010 Oct 1;52(4):1559-73. (PMID: 20457261)
Nature. 1989 Mar 23;338(6213):334-7. (PMID: 2922061)
J Neurosci Methods. 2007 Aug 15;164(1):177-90. (PMID: 17517438)
Science. 2001 Feb 23;291(5508):1560-3. (PMID: 11222864)
Trends Cogn Sci. 2014 Oct;18(10):507-9. (PMID: 25199855)
Trends Neurosci. 2007 Jul;30(7):309-16. (PMID: 17555828)
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3626-31. (PMID: 24554080)
PLoS Biol. 2016 Mar 25;14(3):e1002420. (PMID: 27015604)
Cereb Cortex. 2015 Sep;25(9):2951-9. (PMID: 24855114)
IEEE Trans Image Process. 2009 Jan;18(1):151-7. (PMID: 19095526)
Eur J Neurosci. 1992;4(4):369-375. (PMID: 12106363)
Annu Rev Neurosci. 1995;18:555-86. (PMID: 7605074)
PLoS Biol. 2011 Apr;9(4):e1000610. (PMID: 21532743)
Hum Brain Mapp. 2002 Jan;15(1):1-25. (PMID: 11747097)
Neuron. 2015 Oct 7;88(1):220-35. (PMID: 26447583)
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E606-15. (PMID: 26787906)
J Vis. 2018 Dec 3;18(13):23. (PMID: 30593068)
Cereb Cortex. 2000 Nov;10(11):1117-31. (PMID: 11053232)
Grant Information: P20 GM103476 United States GM NIGMS NIH HHS; U54 MH091657 United States MH NIMH NIH HHS
Contributed Indexing: Keywords: Electrocorticography (ECoG); Human visual cortex; Image-computable; Machine learning; Natural image; Neuronal synchronization; Oscillation; Stimulus decoding
Entry Date(s): Date Created: 20190628 Date Completed: 20200320 Latest Revision: 20201016
Update Code: 20250114
PubMed Central ID: PMC6703910
DOI: 10.1016/j.neuroimage.2019.06.051
PMID: 31247299
Databáze: MEDLINE
Popis
Abstrakt:Many studies have reported visual cortical gamma-band activity related to stimulus processing and cognition. Most respective studies used artificial stimuli, and the few studies that used natural stimuli disagree. Electrocorticographic (ECoG) recordings from awake macaque areas V1 and V4 found gamma to be abundant during free viewing of natural images. In contrast, a study using ECoG recordings from V1 of human patients reported that many natural images induce no gamma and concluded that it is not necessary for seeing. To reconcile these apparently disparate findings, we reanalyzed those same human ECoG data recorded during presentation of natural images. We find that the strength of gamma is positively correlated with different image-computable metrics of image structure. This holds independently of the precise metric used to quantify gamma. In fact, an average of previously used gamma metrics reflects image structure most robustly. Gamma was sufficiently diagnostic of image structure to differentiate between any possible pair of images with &gt;70% accuracy. Thus, while gamma might be weak for some natural images, the graded strength of gamma reflects the graded degree of image structure, and thereby conveys functionally relevant stimulus properties.<br /> (Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.)
ISSN:1095-9572
DOI:10.1016/j.neuroimage.2019.06.051