Deconstructing multivariate decoding for the study of brain function.

Gespeichert in:
Bibliographische Detailangaben
Titel: Deconstructing multivariate decoding for the study of brain function.
Autoren: Hebart MN; Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address: martin.hebart@nih.gov., Baker CI; Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
Quelle: NeuroImage [Neuroimage] 2018 Oct 15; Vol. 180 (Pt A), pp. 4-18. Date of Electronic Publication: 2017 Aug 04.
Publikationsart: Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't; Review
Sprache: English
Info zur Zeitschrift: Publisher: Academic Press Country of Publication: United States NLM ID: 9215515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9572 (Electronic) Linking ISSN: 10538119 NLM ISO Abbreviation: Neuroimage Subsets: MEDLINE
Imprint Name(s): Original Publication: Orlando, FL : Academic Press, c1992-
MeSH-Schlagworte: Multivariate Analysis*, Brain/*physiology , Brain Mapping/*methods , Image Processing, Computer-Assisted/*methods, Humans
Abstract: Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function.
(Copyright © 2017 Elsevier Inc. All rights reserved.)
References: Neuroimage. 2011 Apr 15;55(4):1665-78. (PMID: 21256225)
Nature. 2009 Jul 2;460(7251):94-7. (PMID: 19506558)
Neuroimage. 2014 Feb 15;87:96-110. (PMID: 24239590)
Trends Cogn Sci. 2014 Apr;18(4):203-10. (PMID: 24593982)
Neuroimage. 2005 Nov 15;28(3):663-8. (PMID: 16169252)
Neuroimage. 2015 Apr 15;110:48-59. (PMID: 25623501)
Curr Biol. 2009 Feb 10;19(3):177-83. (PMID: 19185496)
Nat Rev Neurosci. 2009 Mar;10(3):173-85. (PMID: 19229240)
Curr Biol. 2007 Feb 20;17(4):323-8. (PMID: 17291759)
Nat Neurosci. 2008 May;11(5):543-5. (PMID: 18408715)
Front Neurosci. 2017 Oct 06;11:543. (PMID: 29056896)
Neuroimage. 2011 May 15;56(2):525-30. (PMID: 20566321)
Front Hum Neurosci. 2015 Mar 25;9:151. (PMID: 25859202)
Magn Reson Imaging. 2008 Sep;26(7):1007-14. (PMID: 18691999)
Front Syst Neurosci. 2008 Nov 24;2:4. (PMID: 19104670)
Nat Neurosci. 2006 Aug;9(8):981. (PMID: 16871159)
Neuroimage. 2003 Jun;19(2 Pt 1):261-70. (PMID: 12814577)
Neuroimage. 2015 Feb 1;106:198-206. (PMID: 25463456)
J Neurosci. 2013 Mar 27;33(13):5466-74. (PMID: 23536062)
Trends Neurosci. 2011 Aug;34(8):430-42. (PMID: 21696834)
Neuroimage. 2010 Oct 15;53(1):103-18. (PMID: 20580933)
Science. 2008 Nov 7;322(5903):970-3. (PMID: 18988858)
Neuroimage. 2014 Apr 1;89:345-57. (PMID: 24296330)
Annu Rev Psychol. 2012;63:483-509. (PMID: 21943172)
J Neurosci. 2011 Mar 30;31(13):4792-804. (PMID: 21451017)
J Cogn Neurosci. 2018 Oct;30(10):1473-1498. (PMID: 29877764)
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8. (PMID: 16537458)
Nature. 2008 Mar 20;452(7185):352-5. (PMID: 18322462)
Neuroimage. 2011 May 15;56(2):400-10. (PMID: 20691790)
PLoS Comput Biol. 2017 Apr 24;13(4):e1005508. (PMID: 28437426)
Neuroimage. 2011 Feb 1;54(3):2297-307. (PMID: 20869451)
Neuroimage. 1995 Jun;2(2):166-72. (PMID: 9343599)
Curr Biol. 2011 Oct 11;21(19):1641-6. (PMID: 21945275)
Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73. (PMID: 23857415)
Curr Biol. 2013 Aug 5;23(15):1427-31. (PMID: 23871239)
Neuroimage. 2014 Dec;103:401-410. (PMID: 25153699)
Br J Philos Sci. 2019 Jun;70(2):581-607. (PMID: 31086423)
Neuroimage. 2011 May 15;56(2):531-43. (PMID: 20858546)
J Neurosci Methods. 2015 Jul 30;250:126-36. (PMID: 25596422)
Nat Rev Neurosci. 2006 May;7(5):358-66. (PMID: 16760916)
Hum Brain Mapp. 2017 Mar;38(3):1541-1573. (PMID: 27860095)
Nat Neurosci. 2005 May;8(5):679-85. (PMID: 15852014)
Neuroimage. 2007 Aug 15;37(2):539-50. (PMID: 17475513)
Nat Rev Neurosci. 2006 Jul;7(7):523-34. (PMID: 16791142)
Nat Neurosci. 2010 Mar;13(3):369-78. (PMID: 20173745)
Psychon Bull Rev. 2016 Oct;23(5):1415-1428. (PMID: 26833316)
Neuron. 2015 Jul 15;87(2):257-70. (PMID: 26182413)
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13162-7. (PMID: 23878209)
Neuroimage. 2007 Dec;38(4):649-62. (PMID: 17804260)
Cereb Cortex. 2010 Dec;20(12):2916-25. (PMID: 20351021)
Neuroimage. 2011 May 15;56(2):411-21. (PMID: 21281719)
J Neurosci. 2011 Mar 23;31(12):4496-503. (PMID: 21430150)
Neuroimage. 2010 Feb 1;49(3):1943-8. (PMID: 19285144)
Curr Opin Neurobiol. 2009 Aug;19(4):434-8. (PMID: 19608406)
Neuroimage. 2018 Oct 15;180(Pt A):19-30. (PMID: 29288130)
Neuroimage. 2006 Dec;33(4):1104-16. (PMID: 17029988)
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20600-5. (PMID: 18077383)
J Neurosci. 2010 Jan 6;30(1):325-30. (PMID: 20053913)
Neuron. 2013 Apr 24;78(2):364-75. (PMID: 23562541)
Neuroimage. 2018 Oct 15;180(Pt A):119-133. (PMID: 28843540)
Trends Cogn Sci. 2015 Mar;19(3):162-72. (PMID: 25670005)
Hum Brain Mapp. 2016 May;37(5):1842-55. (PMID: 27015748)
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):5000-5. (PMID: 24639493)
Science. 2001 Sep 28;293(5539):2425-30. (PMID: 11577229)
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705):. (PMID: 27574316)
Science. 2013 May 3;340(6132):639-42. (PMID: 23558170)
Trends Cogn Sci. 2006 Sep;10(9):424-30. (PMID: 16899397)
Nat Neurosci. 2007 Jun;10(6):685-6. (PMID: 17486103)
Neuroimage Clin. 2014 Apr 13;4:687-94. (PMID: 24936420)
J Cogn Neurosci. 2008 Feb;20(2):356-70. (PMID: 18275340)
Neuroimage. 2004;23 Suppl 1:S250-63. (PMID: 15501095)
Neuropsychologia. 2012 Mar;50(4):544-52. (PMID: 22100534)
PLoS One. 2013 Jul 08;8(7):e69328. (PMID: 23861966)
Nat Rev Neurosci. 2014 Feb;15(2):123-31. (PMID: 24588019)
Neuron. 2009 Sep 24;63(6):902-15. (PMID: 19778517)
Hum Brain Mapp. 1999;8(2-3):109-14. (PMID: 10524601)
Cereb Cortex. 2016 Jan;26(1):118-130. (PMID: 25112281)
Neuropsychologia. 2017 Oct;105:165-176. (PMID: 28215698)
Front Neuroinform. 2015 Jan 06;8:88. (PMID: 25610393)
Neuroimage. 2014 Aug 15;97:271-83. (PMID: 24768930)
J Neurosci. 2013 Sep 25;33(39):15454-65. (PMID: 24068814)
Magn Reson Med. 2001 Feb;45(2):323-30. (PMID: 11180440)
Neuroimage. 2012 Feb 1;59(3):2636-43. (PMID: 21924359)
Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52. (PMID: 22305994)
Nature. 2005 Nov 24;438(7067):496-9. (PMID: 16244649)
Neuron. 2008 Dec 10;60(5):915-29. (PMID: 19081384)
Neuroimage. 2015 Jun;113:164-74. (PMID: 25819306)
Neuroimage. 2016 Aug 15;137:188-200. (PMID: 26707889)
PLoS Comput Biol. 2014 Apr 17;10(4):e1003553. (PMID: 24743308)
Neuroimage. 2017 Feb 1;146:609-625. (PMID: 27751941)
Neuroimage. 2017 Feb 1;146:113-120. (PMID: 27851996)
Neuroimage. 2008 Jan 1;39(1):181-205. (PMID: 17919928)
Neuroimage. 2017 Jul 15;155:549-564. (PMID: 28456584)
Biostatistics. 2021 Apr 10;22(2):365-380. (PMID: 31612223)
Nature. 2009 Apr 2;458(7238):632-5. (PMID: 19225460)
Grant Information: Z01 MH002909 United States ImNIH Intramural NIH HHS; ZIA MH002909 United States ImNIH Intramural NIH HHS
Contributed Indexing: Keywords: Decoding; Encoding; Multivariate analysis; Multivariate decoding; Multivariate pattern analysis; Prediction; fMRI
Entry Date(s): Date Created: 20170808 Date Completed: 20190201 Latest Revision: 20250530
Update Code: 20250530
PubMed Central ID: PMC5797513
DOI: 10.1016/j.neuroimage.2017.08.005
PMID: 28782682
Datenbank: MEDLINE
Beschreibung
Abstract:Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)
ISSN:1095-9572
DOI:10.1016/j.neuroimage.2017.08.005