Rapid development of image analysis research tools: Bridging the gap between researcher and clinician with pyOsiriX.

Saved in:
Bibliographic Details
Title: Rapid development of image analysis research tools: Bridging the gap between researcher and clinician with pyOsiriX.
Authors: Blackledge MD; CR-UK Cancer Imaging Centre, Radiotherapy and Imaging Division, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom. Electronic address: matthew.blackledge@icr.ac.uk., Collins DJ; CR-UK Cancer Imaging Centre, Radiotherapy and Imaging Division, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom., Koh DM; CR-UK Cancer Imaging Centre, Radiotherapy and Imaging Division, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom., Leach MO; CR-UK Cancer Imaging Centre, Radiotherapy and Imaging Division, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
Source: Computers in biology and medicine [Comput Biol Med] 2016 Feb 01; Vol. 69, pp. 203-12. Date of Electronic Publication: 2015 Dec 18.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Elsevier Country of Publication: United States NLM ID: 1250250 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-0534 (Electronic) Linking ISSN: 00104825 NLM ISO Abbreviation: Comput Biol Med Subsets: MEDLINE
Imprint Name(s): Publication: New York : Elsevier
Original Publication: New York, Pergamon Press.
MeSH Terms: Image Processing, Computer-Assisted* , Programming Languages*, Absorptiometry, Photon/*methods , Tomography, X-Ray Computed/*methods, Humans
Abstract: We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers. Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice in a research setting and thus accelerate the development of advanced clinical image processing. We provide arguments for the use of Python as a robust scripting language for incorporation into larger software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality of OsiriX, and we provide three case studies that exemplify its utility. For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE) method available in Python using the scikit-learn library, where the total number of lines of Python code required to generate this tool was 22. Our second example presents a scheme for segmentation of the skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two example CT studies by using a combination of Python libraries including scikit-learn, scikit-image, SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment, providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively). Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA).
(Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.)
References: Med Eng Phys. 2011 Mar;33(2):226-33. (PMID: 21030288)
AJR Am J Roentgenol. 2006 Apr;186(4):967-76. (PMID: 16554565)
Stat Methods Med Res. 2015 Feb;24(1):68-106. (PMID: 24919829)
IEEE Trans Med Imaging. 1992;11(1):53-61. (PMID: 18218356)
PLoS One. 2011;6(10):e25451. (PMID: 21998659)
J Mol Neurosci. 2008;34(1):51-61. (PMID: 18157658)
Cancer Discov. 2014 Feb;4(2):155-65. (PMID: 24441285)
Radiographics. 2006 Jan-Feb;26(1):299-308. (PMID: 16418259)
Stud Health Technol Inform. 2002;85:586-92. (PMID: 15458157)
Eur Radiol. 2009 Nov;19(11):2728-38. (PMID: 19547986)
J Am Soc Echocardiogr. 2007 Mar;20(3):213-33. (PMID: 17336747)
Circulation. 2002 Jan 29;105(4):539-42. (PMID: 11815441)
J Natl Cancer Inst. 2000 Feb 2;92(3):205-16. (PMID: 10655437)
BMC Health Serv Res. 2010;10:283. (PMID: 20932288)
J Am Coll Cardiol. 2011 Mar 8;57(10):1237-47. (PMID: 21145688)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
Curr Cardiol Rev. 2012 May;8(2):98-108. (PMID: 22894759)
Nat Commun. 2014;5:4006. (PMID: 24892406)
Eur J Cancer. 2012 Mar;48(4):441-6. (PMID: 22257792)
IEEE Pulse. 2011 Nov;2(6):60-70. (PMID: 22147070)
Phys Med Biol. 2015 Feb 7;60(3):R77-114. (PMID: 25592664)
J Nucl Med. 1962 Jul;3:332-4. (PMID: 13869926)
Acta Psychiatr Scand. 2000 Jan;101(1):11-20. (PMID: 10674946)
Lancet. 2005 May 21-27;365(9473):1769-78. (PMID: 15910949)
Nucl Med Commun. 2012 Apr;33(4):349-61. (PMID: 22314804)
Mol Oncol. 2008 Aug;2(2):115-52. (PMID: 19383333)
Stat Methods Med Res. 2015 Feb;24(1):27-67. (PMID: 24919831)
J Am Med Inform Assoc. 1997 May-Jun;4(3):199-212. (PMID: 9147339)
J Nucl Med. 2006 Feb;47(2):287-97. (PMID: 16455635)
Eur J Radiol. 2009 May;70(2):232-41. (PMID: 19303233)
J Nucl Med. 1999 Oct;40(10):1623-9. (PMID: 10520701)
Stat Methods Med Res. 2015 Feb;24(1):9-26. (PMID: 24919826)
Eur J Cancer. 2009 Jan;45(2):228-47. (PMID: 19097774)
Circulation. 2010 Feb 9;121(5):692-705. (PMID: 20142462)
Nat Med. 2008 Apr;14(4):459-65. (PMID: 18376410)
Magn Reson Imaging. 2012 Nov;30(9):1234-48. (PMID: 22898692)
PLoS One. 2014;9(4):e91779. (PMID: 24710083)
J Am Coll Cardiol. 2009 Jun 30;54(1):1-15. (PMID: 19555834)
Handb Exp Pharmacol. 2008;(185 Pt 1):109-32. (PMID: 18626801)
Magn Reson Imaging. 2012 Nov;30(9):1323-41. (PMID: 22770690)
Neurotherapeutics. 2007 Jul;4(3):316-29. (PMID: 17599699)
Eur Radiol. 2008 Jun;18(6):1077-86. (PMID: 18357456)
EJNMMI Res. 2011 Jun 07;1(1):4. (PMID: 22214491)
Eur Radiol. 2009 Mar;19(3):731-44. (PMID: 18925401)
Radiology. 2011 Dec;261(3):700-18. (PMID: 22095994)
IEEE Trans Med Imaging. 1992;11(1):62-9. (PMID: 18218357)
J Stat Softw. 2010 Jul;35(4):1-81. (PMID: 21603108)
J Digit Imaging. 2005 Dec;18(4):270-9. (PMID: 15988626)
Radiology. 2013 Apr;267(1):26-44. (PMID: 23525716)
J Nucl Med. 2004 Feb;45(2):272-8. (PMID: 14960647)
Nature. 2008 Jun 12;453(7197):869-78. (PMID: 18548064)
Comput Biol Med. 2010 Feb;40(2):231-6. (PMID: 20053396)
J Digit Imaging. 2004 Sep;17(3):205-16. (PMID: 15534753)
Radiology. 2011 Nov;261(2):573-81. (PMID: 21852566)
IEEE Trans Med Imaging. 2003 May;22(5):586-98. (PMID: 12846428)
Nat Biotechnol. 2007 Jun;25(6):675-80. (PMID: 17515910)
Eur J Cancer. 2012 Mar;48(4):409-15. (PMID: 22226478)
Grant Information: 16464 United Kingdom CRUK_ Cancer Research UK; PDF-2012-05-441 United Kingdom DH_ Department of Health
Contributed Indexing: Keywords: Computed tomography; Dicom management; Dicom visualisation; Medical imaging; OsiriX; Python; Radiology
Entry Date(s): Date Created: 20160117 Date Completed: 20161027 Latest Revision: 20250529
Update Code: 20250530
PubMed Central ID: PMC4761020
DOI: 10.1016/j.compbiomed.2015.12.002
PMID: 26773941
Database: MEDLINE
Description
Abstract:We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers. Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice in a research setting and thus accelerate the development of advanced clinical image processing. We provide arguments for the use of Python as a robust scripting language for incorporation into larger software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality of OsiriX, and we provide three case studies that exemplify its utility. For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE) method available in Python using the scikit-learn library, where the total number of lines of Python code required to generate this tool was 22. Our second example presents a scheme for segmentation of the skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two example CT studies by using a combination of Python libraries including scikit-learn, scikit-image, SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment, providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively). Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA).<br /> (Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.)
ISSN:1879-0534
DOI:10.1016/j.compbiomed.2015.12.002