Global bifurcation of positive solutions for discrete Kirchhoff equations.
Gespeichert in:
| Titel: | Global bifurcation of positive solutions for discrete Kirchhoff equations. |
|---|---|
| Autoren: | Shi, Xuanrong1 (AUTHOR) sxr15209336785@163.com, Lei, Xiangbing1 (AUTHOR) |
| Quelle: | Dynamical Systems: An International Journal. Sep2025, Vol. 40 Issue 3, p541-554. 14p. |
| Schlagwörter: | BIFURCATION theory, BOUNDARY value problems, SMOOTHNESS of functions |
| Abstract: | In this paper, we show the global structure of positive solutions for the boundary value problem \[ \left\{\begin{array}{lc} \displaystyle-A\left(\sum_{m=1}^{T+1}(D u)(m-1)^2\right)(D^{2}u)(k-1)=\lambda f(k,u(k)), & k\in \mathbb{T}, \\ u(0)=u(T+1)=0, & \\ \end{array} \right. \] { − A (∑ m = 1 T + 1 (Du) (m − 1) 2) (D 2 u) (k − 1) = λf (k , u (k)) , k ∈ T , u (0) = u (T + 1) = 0 , where $ \lambda \gt 0 $ λ > 0 is a parameter, $ \mathbb {T}:=\{1,\ldots,T\} $ T := { 1 , ... , T } , $ A(t):\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} $ A (t) : R + → R + , $ f(k,u): \mathbb {T}\times \mathbb {R}\rightarrow \mathbb {R} $ f (k , u) : T × R → R are continuous functions. Depending on the assumption of A and the behaviour of f near 0 and ∞, we obtain the existence and multiplicity results of positive solutions. The proof of our main results is based on the bifurcation techniques. [ABSTRACT FROM AUTHOR] |
| Copyright of Dynamical Systems: An International Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Datenbank: | Business Source Index |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:bsx&genre=article&issn=14689367&ISBN=&volume=40&issue=3&date=20250901&spage=541&pages=541-554&title=Dynamical Systems: An International Journal&atitle=Global%20bifurcation%20of%20positive%20solutions%20for%20discrete%20Kirchhoff%20equations.&aulast=Shi%2C%20Xuanrong&id=DOI:10.1080/14689367.2025.2503192 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Shi%20X Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: bsx DbLabel: Business Source Index An: 187348026 RelevancyScore: 1412 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1411.61413574219 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Global bifurcation of positive solutions for discrete Kirchhoff equations. – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Shi%2C+Xuanrong%22">Shi, Xuanrong</searchLink><relatesTo>1</relatesTo> (AUTHOR)<i> sxr15209336785@163.com</i><br /><searchLink fieldCode="AR" term="%22Lei%2C+Xiangbing%22">Lei, Xiangbing</searchLink><relatesTo>1</relatesTo> (AUTHOR) – Name: TitleSource Label: Source Group: Src Data: <searchLink fieldCode="JN" term="%22Dynamical+Systems%3A+An+International+Journal%22">Dynamical Systems: An International Journal</searchLink>. Sep2025, Vol. 40 Issue 3, p541-554. 14p. – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22BIFURCATION+theory%22">BIFURCATION theory</searchLink><br /><searchLink fieldCode="DE" term="%22BOUNDARY+value+problems%22">BOUNDARY value problems</searchLink><br /><searchLink fieldCode="DE" term="%22SMOOTHNESS+of+functions%22">SMOOTHNESS of functions</searchLink> – Name: Abstract Label: Abstract Group: Ab Data: In this paper, we show the global structure of positive solutions for the boundary value problem \[ \left\{\begin{array}{lc} \displaystyle-A\left(\sum_{m=1}^{T+1}(D u)(m-1)^2\right)(D^{2}u)(k-1)=\lambda f(k,u(k)), & k\in \mathbb{T}, \\ u(0)=u(T+1)=0, & \\ \end{array} \right. \] { − A (∑ m = 1 T + 1 (Du) (m − 1) 2) (D 2 u) (k − 1) = λf (k , u (k)) , k ∈ T , u (0) = u (T + 1) = 0 , where $ \lambda \gt 0 $ λ > 0 is a parameter, $ \mathbb {T}:=\{1,\ldots,T\} $ T := { 1 , ... , T } , $ A(t):\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} $ A (t) : R + → R + , $ f(k,u): \mathbb {T}\times \mathbb {R}\rightarrow \mathbb {R} $ f (k , u) : T × R → R are continuous functions. Depending on the assumption of A and the behaviour of f near 0 and ∞, we obtain the existence and multiplicity results of positive solutions. The proof of our main results is based on the bifurcation techniques. [ABSTRACT FROM AUTHOR] – Name: AbstractSuppliedCopyright Label: Group: Ab Data: <i>Copyright of Dynamical Systems: An International Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.</i> (Copyright applies to all Abstracts.) |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=bsx&AN=187348026 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1080/14689367.2025.2503192 Languages: – Code: eng Text: English PhysicalDescription: Pagination: PageCount: 14 StartPage: 541 Subjects: – SubjectFull: BIFURCATION theory Type: general – SubjectFull: BOUNDARY value problems Type: general – SubjectFull: SMOOTHNESS of functions Type: general Titles: – TitleFull: Global bifurcation of positive solutions for discrete Kirchhoff equations. Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Shi, Xuanrong – PersonEntity: Name: NameFull: Lei, Xiangbing IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 09 Text: Sep2025 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 14689367 Numbering: – Type: volume Value: 40 – Type: issue Value: 3 Titles: – TitleFull: Dynamical Systems: An International Journal Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science