Global bifurcation of positive solutions for discrete Kirchhoff equations.

Gespeichert in:
Bibliographische Detailangaben
Titel: Global bifurcation of positive solutions for discrete Kirchhoff equations.
Autoren: Shi, Xuanrong1 (AUTHOR) sxr15209336785@163.com, Lei, Xiangbing1 (AUTHOR)
Quelle: Dynamical Systems: An International Journal. Sep2025, Vol. 40 Issue 3, p541-554. 14p.
Schlagwörter: BIFURCATION theory, BOUNDARY value problems, SMOOTHNESS of functions
Abstract: In this paper, we show the global structure of positive solutions for the boundary value problem \[ \left\{\begin{array}{lc} \displaystyle-A\left(\sum_{m=1}^{T+1}(D u)(m-1)^2\right)(D^{2}u)(k-1)=\lambda f(k,u(k)), & k\in \mathbb{T}, \\ u(0)=u(T+1)=0, & \\ \end{array} \right. \] { − A (∑ m = 1 T + 1 (Du) (m − 1) 2) (D 2 u) (k − 1) = λf (k , u (k)) , k ∈ T , u (0) = u (T + 1) = 0 , where $ \lambda \gt 0 $ λ > 0 is a parameter, $ \mathbb {T}:=\{1,\ldots,T\} $ T := { 1 , ... , T } , $ A(t):\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} $ A (t) : R + → R + , $ f(k,u): \mathbb {T}\times \mathbb {R}\rightarrow \mathbb {R} $ f (k , u) : T × R → R are continuous functions. Depending on the assumption of A and the behaviour of f near 0 and ∞, we obtain the existence and multiplicity results of positive solutions. The proof of our main results is based on the bifurcation techniques. [ABSTRACT FROM AUTHOR]
Copyright of Dynamical Systems: An International Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Business Source Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:bsx&genre=article&issn=14689367&ISBN=&volume=40&issue=3&date=20250901&spage=541&pages=541-554&title=Dynamical Systems: An International Journal&atitle=Global%20bifurcation%20of%20positive%20solutions%20for%20discrete%20Kirchhoff%20equations.&aulast=Shi%2C%20Xuanrong&id=DOI:10.1080/14689367.2025.2503192
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Shi%20X
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: bsx
DbLabel: Business Source Index
An: 187348026
RelevancyScore: 1412
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1411.61413574219
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Global bifurcation of positive solutions for discrete Kirchhoff equations.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Shi%2C+Xuanrong%22">Shi, Xuanrong</searchLink><relatesTo>1</relatesTo> (AUTHOR)<i> sxr15209336785@163.com</i><br /><searchLink fieldCode="AR" term="%22Lei%2C+Xiangbing%22">Lei, Xiangbing</searchLink><relatesTo>1</relatesTo> (AUTHOR)
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%22Dynamical+Systems%3A+An+International+Journal%22">Dynamical Systems: An International Journal</searchLink>. Sep2025, Vol. 40 Issue 3, p541-554. 14p.
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22BIFURCATION+theory%22">BIFURCATION theory</searchLink><br /><searchLink fieldCode="DE" term="%22BOUNDARY+value+problems%22">BOUNDARY value problems</searchLink><br /><searchLink fieldCode="DE" term="%22SMOOTHNESS+of+functions%22">SMOOTHNESS of functions</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: In this paper, we show the global structure of positive solutions for the boundary value problem \[ \left\{\begin{array}{lc} \displaystyle-A\left(\sum_{m=1}^{T+1}(D u)(m-1)^2\right)(D^{2}u)(k-1)=\lambda f(k,u(k)), & k\in \mathbb{T}, \\ u(0)=u(T+1)=0, & \\ \end{array} \right. \] { − A (∑ m = 1 T + 1 (Du) (m − 1) 2) (D 2 u) (k − 1) = λf (k , u (k)) , k ∈ T , u (0) = u (T + 1) = 0 , where $ \lambda \gt 0 $ λ > 0 is a parameter, $ \mathbb {T}:=\{1,\ldots,T\} $ T := { 1 , ... , T } , $ A(t):\mathbb {R}^{+}\rightarrow \mathbb {R}^{+} $ A (t) : R + → R + , $ f(k,u): \mathbb {T}\times \mathbb {R}\rightarrow \mathbb {R} $ f (k , u) : T × R → R are continuous functions. Depending on the assumption of A and the behaviour of f near 0 and ∞, we obtain the existence and multiplicity results of positive solutions. The proof of our main results is based on the bifurcation techniques. [ABSTRACT FROM AUTHOR]
– Name: AbstractSuppliedCopyright
  Label:
  Group: Ab
  Data: <i>Copyright of Dynamical Systems: An International Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.</i> (Copyright applies to all Abstracts.)
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=bsx&AN=187348026
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1080/14689367.2025.2503192
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 541
    Subjects:
      – SubjectFull: BIFURCATION theory
        Type: general
      – SubjectFull: BOUNDARY value problems
        Type: general
      – SubjectFull: SMOOTHNESS of functions
        Type: general
    Titles:
      – TitleFull: Global bifurcation of positive solutions for discrete Kirchhoff equations.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Shi, Xuanrong
      – PersonEntity:
          Name:
            NameFull: Lei, Xiangbing
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 09
              Text: Sep2025
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 14689367
          Numbering:
            – Type: volume
              Value: 40
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Dynamical Systems: An International Journal
              Type: main
ResultId 1