Differential Space-Time Modulation Over Frequency-Selective Channels.

Gespeichert in:
Bibliographische Detailangaben
Titel: Differential Space-Time Modulation Over Frequency-Selective Channels.
Autoren: Hongbin Li1 hli@stevens.edu
Quelle: IEEE Transactions on Signal Processing. Jun2005, Vol. 53 Issue 6, p2228-2243. 16p.
Schlagwörter: *TECHNICAL specifications, *PROBABILITY theory, *INFORMATION display systems, LIQUID crystal displays, LIQUID crystal devices, LIQUID crystal display television sets
Abstract: We present herein a new differential space-time-frequency (DSTF) modulation scheme for systems that are equipped with an arbitrary number of transmit antennas and operate in frequency-selective channels. The proposed DSTF modulator consists of a concatenating spectral encoder and differential encoder that offer full spatio-spectral diversity and significant coding gain. A unitary structure is imposed on the differential encoder to admit linear, decoupled maximum likelihood (ML) detection in space and time. Optimum criteria based on pairwise error probability analysis are developed for spectral encoder design. We introduce a class of spectral codes, namely, linear constellation decimation (LCD) codes, which are nonbinary block codes obtained by decimating a phase-shift-keying (PSK) constellation with a group of decimation factors that are co-prime with the constellation size. Since LCD codes encode across a minimally necessary set of subchannels for full diversity, they incur modest decoding complexity among all full-diversity codes. Numerical results are presented to illustrate the performance of the proposed DSTF modulation and coding scheme, which compares favorably with several existing differential space-time schemes in frequency-selective channels. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Signal Processing is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Business Source Index
Beschreibung
Abstract:We present herein a new differential space-time-frequency (DSTF) modulation scheme for systems that are equipped with an arbitrary number of transmit antennas and operate in frequency-selective channels. The proposed DSTF modulator consists of a concatenating spectral encoder and differential encoder that offer full spatio-spectral diversity and significant coding gain. A unitary structure is imposed on the differential encoder to admit linear, decoupled maximum likelihood (ML) detection in space and time. Optimum criteria based on pairwise error probability analysis are developed for spectral encoder design. We introduce a class of spectral codes, namely, linear constellation decimation (LCD) codes, which are nonbinary block codes obtained by decimating a phase-shift-keying (PSK) constellation with a group of decimation factors that are co-prime with the constellation size. Since LCD codes encode across a minimally necessary set of subchannels for full diversity, they incur modest decoding complexity among all full-diversity codes. Numerical results are presented to illustrate the performance of the proposed DSTF modulation and coding scheme, which compares favorably with several existing differential space-time schemes in frequency-selective channels. [ABSTRACT FROM AUTHOR]
ISSN:1053587X
DOI:10.1109/TSP.2005.847853