List-Decoding Algorithms for Lifted Codes.

Uloženo v:
Podrobná bibliografie
Název: List-Decoding Algorithms for Lifted Codes.
Autoři: Guo, Alan1, Kopparty, Swastik2
Zdroj: IEEE Transactions on Information Theory. May2016, Vol. 62 Issue 5, p2719-2725. 7p.
Témata: *MULTIPLEXING, *BROADCAST channels, *INFORMATION theory, CODING theory, BROADCAST data systems, SIGNAL theory, QUANTUM theory, DECODING algorithms
Abstrakt: Lifted Reed–Solomon codes are a natural affine-invariant family of error-correcting codes, which generalize Reed–Muller codes. They were known to have efficient local-testing and local-decoding algorithms (comparable with the known algorithms for Reed–Muller codes), but with significantly better rate. We give efficient algorithms for list decoding and local list decoding of lifted codes. Our algorithms are based on a new technical lemma, which says that the codewords of lifted codes are low degree polynomials when viewed as univariate polynomials over a big field (even though they may be very high degree when viewed as multivariate polynomials over a small field). [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Information Theory is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Business Source Index
Popis
Abstrakt:Lifted Reed–Solomon codes are a natural affine-invariant family of error-correcting codes, which generalize Reed–Muller codes. They were known to have efficient local-testing and local-decoding algorithms (comparable with the known algorithms for Reed–Muller codes), but with significantly better rate. We give efficient algorithms for list decoding and local list decoding of lifted codes. Our algorithms are based on a new technical lemma, which says that the codewords of lifted codes are low degree polynomials when viewed as univariate polynomials over a big field (even though they may be very high degree when viewed as multivariate polynomials over a small field). [ABSTRACT FROM AUTHOR]
ISSN:00189448
DOI:10.1109/TIT.2016.2538766