Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach.

Saved in:
Bibliographic Details
Title: Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach.
Authors: Simanovskii, Yuri1 (AUTHOR), Abramovich, Haim1 (AUTHOR)
Source: Materials (1996-1944). Sep2025, Vol. 18 Issue 17, p4138. 22p.
Subject Terms: *COMPOSITE plates, *ALUMINUM plates, *SHEARING force, *AEROSPACE engineering, *MATERIALS testing, *FINITE element method, *STRUCTURAL failures
Abstract: Old airplanes produced in the 1970s are still flying, while being exposed to various new types of detriments, leading to a need to repair them to enable the safe use of the airborne body. The present state of the art advocates the use of laminated composite to repair aluminum parts due to their effective durability. The studies presented in the literature mainly focused on bodies under tensile loads. It seems that shear-type loading appearing in the fuselage of airplanes when being under torsion has been ignored in literature. Therefore, to fill this gap, the present study investigates the behavior of defective aluminum panels under pure shear. The present investigation uses a novel finite element (FE) method of modelling the loaded body by 2D and 3D elements. Then, the model is used to calculate the influence of various parameters, like the size of the repair patch, overlaps, sequences of the laminated composite plate, and other structural properties on the stability and strength of the examined part. To validate the numerical predictions, tests were performed on typical elements. Based on the experimental results, the fidelity of the FE model was assessed and the method approach of repairing using composite patches was validated. The main conclusion from the present study is the use of solid (3D) elements, over shell (2D) elements, due to their high-fidelity results. [ABSTRACT FROM AUTHOR]
Database: Academic Search Index
Description
Abstract:Old airplanes produced in the 1970s are still flying, while being exposed to various new types of detriments, leading to a need to repair them to enable the safe use of the airborne body. The present state of the art advocates the use of laminated composite to repair aluminum parts due to their effective durability. The studies presented in the literature mainly focused on bodies under tensile loads. It seems that shear-type loading appearing in the fuselage of airplanes when being under torsion has been ignored in literature. Therefore, to fill this gap, the present study investigates the behavior of defective aluminum panels under pure shear. The present investigation uses a novel finite element (FE) method of modelling the loaded body by 2D and 3D elements. Then, the model is used to calculate the influence of various parameters, like the size of the repair patch, overlaps, sequences of the laminated composite plate, and other structural properties on the stability and strength of the examined part. To validate the numerical predictions, tests were performed on typical elements. Based on the experimental results, the fidelity of the FE model was assessed and the method approach of repairing using composite patches was validated. The main conclusion from the present study is the use of solid (3D) elements, over shell (2D) elements, due to their high-fidelity results. [ABSTRACT FROM AUTHOR]
ISSN:19961944
DOI:10.3390/ma18174138