Fast electron initiated electron–hole pair creation in semiconductors.

Uložené v:
Podrobná bibliografia
Názov: Fast electron initiated electron–hole pair creation in semiconductors.
Autori: Bodie, C. S.1 (AUTHOR) c.bodie@sussex.ac.uk, Barnett, A. M.1,2 (AUTHOR)
Zdroj: Journal of Applied Physics. 10/28/2024, Vol. 136 Issue 16, p1-10. 10p.
Predmety: *PARTICLE physics, *NUCLEAR engineering, *SPACE sciences, *SEMICONDUCTOR materials, *QUANTUM computing
Abstrakt: Through Monte Carlo modeling, it is shown that the statistics of electron–hole pair creation in semiconductors (and by extension, presumably, ion-pair creation in gas proportional counters) are substantially different for fast electrons (and by extension, presumably, alpha particles, ions, etc.) cf. x-ray/γ-ray photons. New variables are introduced to quantify the differences in the statistics: the loss parameter, ζ(E′), which acts on the average e−–h+ pair creation energy; and the broadening factor, B(E′), which acts on the Fano factor. E′ is the initial energy of the fast electron. ζ(E′) and B(E′) are computed for a variety of semiconductor materials. A new equation for the statistically limited energy resolution of a particle counting fast electron spectrometer is established. This new equation supersedes and replaces that for the Fano-limited energy resolution of a particle counting fast electron spectrometer. The implications impact a wide variety of fields wherever fast electrons (or alpha particles, ions, etc.) and/or Fano statistics are used; this includes, inter alia, quantum computing, x-ray excitonics, space science, optoelectronics, nuclear engineering, particle physics, photovoltaics, and even neural response variability in the brain. [ABSTRACT FROM AUTHOR]
Databáza: Academic Search Index
Popis
Abstrakt:Through Monte Carlo modeling, it is shown that the statistics of electron–hole pair creation in semiconductors (and by extension, presumably, ion-pair creation in gas proportional counters) are substantially different for fast electrons (and by extension, presumably, alpha particles, ions, etc.) cf. x-ray/γ-ray photons. New variables are introduced to quantify the differences in the statistics: the loss parameter, ζ(E′), which acts on the average e−–h+ pair creation energy; and the broadening factor, B(E′), which acts on the Fano factor. E′ is the initial energy of the fast electron. ζ(E′) and B(E′) are computed for a variety of semiconductor materials. A new equation for the statistically limited energy resolution of a particle counting fast electron spectrometer is established. This new equation supersedes and replaces that for the Fano-limited energy resolution of a particle counting fast electron spectrometer. The implications impact a wide variety of fields wherever fast electrons (or alpha particles, ions, etc.) and/or Fano statistics are used; this includes, inter alia, quantum computing, x-ray excitonics, space science, optoelectronics, nuclear engineering, particle physics, photovoltaics, and even neural response variability in the brain. [ABSTRACT FROM AUTHOR]
ISSN:00218979
DOI:10.1063/5.0225827