Simulation of Taylor flow evaporation for bubble-pump applications
Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 116; číslo C |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier
15.09.2017
|
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. Here this approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications. |
|---|---|
| AbstractList | Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. Here this approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications. |
| Author | Garimella, Srinivas Rattner, Alexander S. |
| Author_xml | – sequence: 1 fullname: Rattner, Alexander S. organization: Pennsylvania State University, University Park, PA (United States) – sequence: 2 fullname: Garimella, Srinivas organization: Georgia Institute of Technology, Atlanta, GA (United States) |
| BackLink | https://www.osti.gov/servlets/purl/1463643$$D View this record in Osti.gov |
| BookMark | eNqNissKAiEYRiUmaKZ6B2kvaA5z2RZF-2Y_qCgZjr-MTtHbd32AVh_nnK9AmQevZyhnTd2SLWvaDOWUspq0nNEFKmK8vpGWVY52ZztMTiQLHoPBnXg4GLFxcMf6JgKM32ReUk5SOk3CNAQsQnBWfVpcobkRLur1b5doczx0-xOBmGwflU1aXRR4r1XqWVnxquT8r9MT6h89cQ |
| ContentType | Journal Article |
| CorporateAuthor | Georgia Institute of Technology, Atlanta, GA (United States) Lawrence Berkeley National Laboratory, Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory, Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) – name: Georgia Institute of Technology, Atlanta, GA (United States) |
| DBID | OIOZB OTOTI |
| DatabaseName | OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 1463643 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALMO AALRI AAOAW AAPBV AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ABPIF ABPTK ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OIOZB OTOTI OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- |
| ID | FETCH-osti_scitechconnect_14636433 |
| ISSN | 0017-9310 |
| IngestDate | Mon Jun 26 02:30:32 EDT 2023 |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-osti_scitechconnect_14636433 |
| Notes | USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) FG02-97ER25308; AC02-05CH11231 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1463643 |
| ParticipantIDs | osti_scitechconnect_1463643 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-15 |
| PublicationDateYYYYMMDD | 2017-09-15 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2017 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| SSID | ssj0017046 |
| Score | 4.4537477 |
| Snippet | Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional... |
| SourceID | osti |
| SourceType | Open Access Repository |
| SubjectTerms | absorption refrigeration bubble pump ENGINEERING flow boiling volume of fluid |
| Title | Simulation of Taylor flow evaporation for bubble-pump applications |
| URI | https://www.osti.gov/servlets/purl/1463643 |
| Volume | 116 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEMcngprowShKVNRsjDdSg7Sku0ckGDWGGOHQG-n2kZBAS6AgH9-Zdmm3F6IHL01fKbS_zex_d-cB8IBtwra54EbHwpGO5bddg4cSD33f5x1JKcPTQOEPezDgjiM-VUm_ZVpOwI4ivtmI-b-ixnMIm0Jn_4A7fyiewH2EjlvEjttfgR9OZqokFwnBbETeDKfxN2X2nm-Jp16aKymngTFHok19IVsXrOUZQy3PBBnxdOVhhvKbKk2g_i08fb_cJFGhNHkITXP4mHv7uFRVAFtgOvlKi0hrtzQBgZ0aFVDoFLNiqgvXrSzeJEzlrhpkhpXbwkA5IUqWNwuzVE2sV3RJuaPgE-Uzs8wKVMyWVYX97lvfec9XiexWFoi1_T3sVmM0jJpAGJ3CiVL2rJsROYO9IKrBsZbvsQaHqb-ttzyH54ISi0OWUWJEiWmUGFJiGiWmU7qA-5f-qPdq0J8Zo5KhdLwe-S15yVi9kVmHahRHwSUwys8T4jBXUqWBtvTdQLZpzOMJ7qPYNq-gseNB1zuvNuCoQHYD1WSxCm7hwFsnk-XiTn3PH7KZLoc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+Taylor+flow+evaporation+for+bubble-pump+applications&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Rattner%2C+Alexander+S.&rft.au=Garimella%2C+Srinivas&rft.date=2017-09-15&rft.pub=Elsevier&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=116&rft.issue=C&rft.externalDocID=1463643 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |