Simulation of Taylor flow evaporation for bubble-pump applications

Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 116; číslo C
Hlavní autoři: Rattner, Alexander S., Garimella, Srinivas
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier 15.09.2017
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. Here this approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications.
AbstractList Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional spot-heated BPGs, heat is transferred over a small area, requiring high source temperatures. Distributed-heated BPGs receive thermal input over most of the component surface, enabling low temperature operation. In this investigation, a Volume-of-Fluid phase-change simulation formulation is developed and validated. Here this approach is applied to the evaporating Taylor flow pattern in distributed-heated BPGs. A 2-D axisymmetric simulation is performed, which yields detailed information about the developing heat transfer and two-phase flow phenomena. Results are used to assess predicted trends and sub-models from a 1-D segmented BPG model. Close agreement is obtained between segmented model and simulation results for bubble rise velocity (5–7% deviation), bubble and slug lengths, void fraction (3%), and hydrodynamic pressure drop (18%). Specifying average Taylor bubble lengths from the simulation as an input to the segmented model reduces hydrodynamic pressure drop deviation to 6%. Simulated flow-evaporation heat transfer coefficients are significantly higher than those predicted using analytic models from the literature. A new flow evaporation heat transfer correlation that accounts for developing slug flow effects is proposed, and yields close agreement with simulation results for heat transfer coefficient (AAD = 11%) and overall heat transfer rate (2%). Overall, this investigation provides validation for a distributed-heated BPG modeling approach, which can enable passive refrigeration for diverse applications.
Author Garimella, Srinivas
Rattner, Alexander S.
Author_xml – sequence: 1
  fullname: Rattner, Alexander S.
  organization: Pennsylvania State University, University Park, PA (United States)
– sequence: 2
  fullname: Garimella, Srinivas
  organization: Georgia Institute of Technology, Atlanta, GA (United States)
BackLink https://www.osti.gov/servlets/purl/1463643$$D View this record in Osti.gov
BookMark eNqNissKAiEYRiUmaKZ6B2kvaA5z2RZF-2Y_qCgZjr-MTtHbd32AVh_nnK9AmQevZyhnTd2SLWvaDOWUspq0nNEFKmK8vpGWVY52ZztMTiQLHoPBnXg4GLFxcMf6JgKM32ReUk5SOk3CNAQsQnBWfVpcobkRLur1b5doczx0-xOBmGwflU1aXRR4r1XqWVnxquT8r9MT6h89cQ
ContentType Journal Article
CorporateAuthor Georgia Institute of Technology, Atlanta, GA (United States)
Lawrence Berkeley National Laboratory, Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory, Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
– name: Georgia Institute of Technology, Atlanta, GA (United States)
DBID OIOZB
OTOTI
DatabaseName OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2189
ExternalDocumentID 1463643
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAPBV
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABPIF
ABPTK
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OIOZB
OTOTI
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
ID FETCH-osti_scitechconnect_14636433
ISSN 0017-9310
IngestDate Mon Jun 26 02:30:32 EDT 2023
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Language English
LinkModel OpenURL
MergedId FETCHMERGED-osti_scitechconnect_14636433
Notes USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
FG02-97ER25308; AC02-05CH11231
OpenAccessLink https://www.osti.gov/servlets/purl/1463643
ParticipantIDs osti_scitechconnect_1463643
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle International journal of heat and mass transfer
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0017046
Score 4.4537477
Snippet Single-pressure absorption systems incorporate bubble-pump generators (BPGs) for refrigerant separation and passive fluid circulation. In conventional...
SourceID osti
SourceType Open Access Repository
SubjectTerms absorption refrigeration
bubble pump
ENGINEERING
flow boiling
volume of fluid
Title Simulation of Taylor flow evaporation for bubble-pump applications
URI https://www.osti.gov/servlets/purl/1463643
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT8JAEMcngprowShKVNRsjDdSg7Sku0ckGDWGGOHQG-n2kZBAS6AgH9-Zdmm3F6IHL01fKbS_zex_d-cB8IBtwra54EbHwpGO5bddg4cSD33f5x1JKcPTQOEPezDgjiM-VUm_ZVpOwI4ivtmI-b-ixnMIm0Jn_4A7fyiewH2EjlvEjttfgR9OZqokFwnBbETeDKfxN2X2nm-Jp16aKymngTFHok19IVsXrOUZQy3PBBnxdOVhhvKbKk2g_i08fb_cJFGhNHkITXP4mHv7uFRVAFtgOvlKi0hrtzQBgZ0aFVDoFLNiqgvXrSzeJEzlrhpkhpXbwkA5IUqWNwuzVE2sV3RJuaPgE-Uzs8wKVMyWVYX97lvfec9XiexWFoi1_T3sVmM0jJpAGJ3CiVL2rJsROYO9IKrBsZbvsQaHqb-ttzyH54ISi0OWUWJEiWmUGFJiGiWmU7qA-5f-qPdq0J8Zo5KhdLwe-S15yVi9kVmHahRHwSUwys8T4jBXUqWBtvTdQLZpzOMJ7qPYNq-gseNB1zuvNuCoQHYD1WSxCm7hwFsnk-XiTn3PH7KZLoc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+Taylor+flow+evaporation+for+bubble-pump+applications&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Rattner%2C+Alexander+S.&rft.au=Garimella%2C+Srinivas&rft.date=2017-09-15&rft.pub=Elsevier&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=116&rft.issue=C&rft.externalDocID=1463643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon