Characterization of hypersurfaces in four dimensional product spaces via two different Spin^c structures

The Riemannian product M1(c1)×M2(c2), where Mi(ci) denotes the 2-dimensional space form of constant sectional curvature ci ∈ R, has two different Spin c structures carrying each a parallel spinor. The restriction of these two parallel spinor fields to a 3-dimensional hypersurface M characterizes the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of global analysis and geometry Ročník 61; číslo 1; s. 89 - 114
Hlavní autoři: Nakad, Roger, Roth, Julien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Springer Verlag 07.10.2021
Témata:
ISSN:0232-704X, 1572-9060
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Riemannian product M1(c1)×M2(c2), where Mi(ci) denotes the 2-dimensional space form of constant sectional curvature ci ∈ R, has two different Spin c structures carrying each a parallel spinor. The restriction of these two parallel spinor fields to a 3-dimensional hypersurface M characterizes the isometric immersion of M into M1(c1) × M2(c2). As an application, we prove that totally umbilical hypersurfaces of M1(c1) × M1(c1) and totally umbilical hypersurfaces of M1(c1) × M2(c2) (c1 = c2) having a local structure product, are of constant mean curvature.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-021-09802-4