The selective deployment of AI in healthcare
Machine‐learning algorithms have the potential to revolutionise diagnostic and prognostic tasks in health care, yet algorithmic performance levels can be materially worse for subgroups that have been underrepresented in algorithmic training data. Given this epistemic deficit, the inclusion of underr...
Saved in:
| Published in: | Bioethics Vol. 38; no. 5; pp. 391 - 400 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.06.2024
|
| Subjects: | |
| ISSN: | 0269-9702, 1467-8519 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Machine‐learning algorithms have the potential to revolutionise diagnostic and prognostic tasks in health care, yet algorithmic performance levels can be materially worse for subgroups that have been underrepresented in algorithmic training data. Given this epistemic deficit, the inclusion of underrepresented groups in algorithmic processes can result in harm. Yet delaying the deployment of algorithmic systems until more equitable results can be achieved would avoidably and foreseeably lead to a significant number of unnecessary deaths in well‐represented populations. Faced with this dilemma between equity and utility, we draw on two case studies involving breast cancer and melanoma to argue for the selective deployment of diagnostic and prognostic tools for some well‐represented groups, even if this results in the temporary exclusion of underrepresented patients from algorithmic approaches. We argue that this approach is justifiable when the inclusion of underrepresented patients would cause them to be harmed. While the context of historic injustice poses a considerable challenge for the ethical acceptability of selective algorithmic deployment strategies, we argue that, at least for the case studies addressed in this article, the issue of historic injustice is better addressed through nonalgorithmic measures, including being transparent with patients about the nature of the current epistemic deficits, providing additional services to algorithmically excluded populations, and through urgent commitments to gather additional algorithmic training data from excluded populations, paving the way for universal algorithmic deployment that is accurate for all patient groups. These commitments should be supported by regulation and, where necessary, government funding to ensure that any delays for excluded groups are kept to the minimum. We offer an ethical algorithm for algorithms—showing when to ethically delay, expedite, or selectively deploy algorithmic systems in healthcare settings. |
|---|---|
| AbstractList | Machine‐learning algorithms have the potential to revolutionise diagnostic and prognostic tasks in health care, yet algorithmic performance levels can be materially worse for subgroups that have been underrepresented in algorithmic training data. Given this epistemic deficit, the inclusion of underrepresented groups in algorithmic processes can result in harm. Yet delaying the deployment of algorithmic systems until more equitable results can be achieved would avoidably and foreseeably lead to a significant number of unnecessary deaths in well‐represented populations. Faced with this dilemma between equity and utility, we draw on two case studies involving breast cancer and melanoma to argue for the selective deployment of diagnostic and prognostic tools for some well‐represented groups, even if this results in the temporary exclusion of underrepresented patients from algorithmic approaches. We argue that this approach is justifiable when the inclusion of underrepresented patients would cause them to be harmed. While the context of historic injustice poses a considerable challenge for the ethical acceptability of selective algorithmic deployment strategies, we argue that, at least for the case studies addressed in this article, the issue of historic injustice is better addressed through nonalgorithmic measures, including being transparent with patients about the nature of the current epistemic deficits, providing additional services to algorithmically excluded populations, and through urgent commitments to gather additional algorithmic training data from excluded populations, paving the way for universal algorithmic deployment that is accurate for all patient groups. These commitments should be supported by regulation and, where necessary, government funding to ensure that any delays for excluded groups are kept to the minimum. We offer an ethical algorithm for algorithms—showing when to ethically delay, expedite, or selectively deploy algorithmic systems in healthcare settings. |
| Author | Savulescu, Julian Vandersluis, Robert |
| Author_xml | – sequence: 1 givenname: Robert orcidid: 0009-0003-7197-104X surname: Vandersluis fullname: Vandersluis, Robert email: bob_vandersluis@post.harvard.edu organization: GSK – sequence: 2 givenname: Julian orcidid: 0000-0003-1691-6403 surname: Savulescu fullname: Savulescu, Julian organization: National University of Singapore |
| BookMark | eNotj0FOwzAQRS1UJNLChhP4AKR44sSOl6UqEKlSN2Vt2dOxYpQmVRJAuT1t4W3-Xz3pzdms7Vpi7BHEEs48-9jREmRWwg1LIFc6LQswM5aITJnUaJHdsfkwfIozpigS9rSviQ_UEI7xm_iBTk03HakdeRf4quKx5TW5ZqzR9XTPboNrBnr43wX7eN3s1-_pdvdWrVfb9AuUhFQjeoUBlch1GYiAnENAUWqAnDJTaA-onctkIKO1UuBz7dCg9OFgykIuGPx5f2JDkz318ej6yYKwl0h7ibTXSPtS7TbXJ38BKHFImg |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. |
| DBID | 24P |
| DOI | 10.1111/bioe.13281 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Philosophy |
| EISSN | 1467-8519 |
| EndPage | 400 |
| ExternalDocumentID | BIOE13281 |
| Genre | article |
| GroupedDBID | --- --Z -ET .3N .GA .GJ .Y3 04C 05W 0R~ 10A 186 1OB 1OC 23N 24P 31~ 33P 36B 3O- 4.4 44B 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5GY 5HH 5LA 5VS 66C 6J9 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABCJ AABNI AAESR AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AAONW AAOUF AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABTAH ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACJZB ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOJX ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMSDO BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 EAD EAP EAS EBC EBD EBS ECF ECT ECV EHE EIHBH EJD EMB EMK EMOBN ENC EPT ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA GXZFM HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M KBYEO LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NF~ O66 O9- OIG OVD P2P P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RWL RX1 RXW SAMSI SUPJJ SV3 TAE TEORI TN5 TUS UB1 UPT V8K W8V W99 WBKPD WGLLI WH7 WIH WII WIJ WOHZO WQ9 WQZ WRC WSUWO WXI WXSBR XG1 XJT XSW YCJ YUY ZGI ZY4 ZZTAW ~IA ~WP |
| ID | FETCH-LOGICAL-u1631-7ccb6cfc60478fee1eaac1c087114e2957b1c7aa23fe977661b47ac9c3bfd9853 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193591300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-9702 |
| IngestDate | Wed Jan 22 17:20:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-u1631-7ccb6cfc60478fee1eaac1c087114e2957b1c7aa23fe977661b47ac9c3bfd9853 |
| Notes | The views expressed in the paper are the author's own, and do not necessarily reflect of views of GSK or GSK.ai. |
| ORCID | 0000-0003-1691-6403 0009-0003-7197-104X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbioe.13281 |
| PageCount | 10 |
| ParticipantIDs | wiley_primary_10_1111_bioe_13281_BIOE13281 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Bioethics |
| PublicationYear | 2024 |
| SSID | ssj0000955 |
| Score | 2.420889 |
| Snippet | Machine‐learning algorithms have the potential to revolutionise diagnostic and prognostic tasks in health care, yet algorithmic performance levels can be... |
| SourceID | wiley |
| SourceType | Publisher |
| StartPage | 391 |
| SubjectTerms | algorithm artificial intelligence bias exclusion machine learning melanoma |
| Title | The selective deployment of AI in healthcare |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbioe.13281 |
| Volume | 38 |
| WOSCitedRecordID | wos001193591300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8519 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000955 issn: 0269-9702 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6KVelFbVV8lhw8iSub3W2yAS9VWyxoLWKhtyVP7GUrfQj99ybZbqtH8ZZDAmGSmfkmmZkP4CpOhBEGqyDUNAwSkwqrUloFpCU5IVozwUNPNkH7_XQ0YoMK3JW1MEV_iPWDm9MMb6-dgnMx-6HkYjzRtzaWcnXXVYzj1BE3RMlgY4eZ5zy1QQYLGHV5PPUyj2ez9jcm9U6lu_-_7RzA3gpMonZx-nWo6LwBOwW95LIBuy-rj_MG1AYlZcHyEG7s3UAzT4BjbR1S2pH-uldCNDGo3UPjHH2s08KOYNjtvD88BSvWhGBhsRUOqJSCSCOJ67tjtMaac4llaCMjnOiItajAknIexUZb8Gf9s0gol0zGwihmvfcxbOWTXJ8AojjCPObGroxdxW3KuUoiqSyqI4rw6BSuvUiyz6IzRlZGFE4YmRdGdt977fjR2V8mn0MtsuihyMm6gK35dKEvYVt-zcezadOfcxOqj2_d4fM3gJarfA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4YfHFRQY1ve_BkXLPtLi09ooFABOSACbdN220Dl8XwMOHf23YX0KPx1sM22Uw7M99MZ-YDeIhiaaTBaRBqFgaxqUurUjoNaE0JSrXmUoSebIL1-_XRiA-K2hzXC5PPh9gk3JxmeHvtFNwlpH9ouZxM9bMNplzj9W5s3Yy75iQebA0x96SnNsrgAWeukKeyLuTZ7v0NSr1XaR3_839O4KiAk6iRn38FdnRWhf2cYHJVhYNe8XRehfJgTVqwOoUnezvQ3FPgWGuHUu1of12eEE0NanTQJEPjTWHYGXy0msPXdlDwJgRLi65wwJSSVBlF3eQdozXWQiisQhsb4VgTXmMSKyYEiYy28M96aBkzobiKpEm59d_nUMqmmb4AxDDBIhLG7oxcz21diDQmKrW4jqZUkEt49DJJPvPZGMk6pnDCSLwwkpfOe9Ovrv7y8T0ctoe9btLt9N-uoUwslsgrtG6gtJgt9S3sqa_FZD6784f-DW1zrcc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YUMJFBTW-3YMnY023LV32iEIjEZEYSbg1-4xcCuFhwr93d1tAj8ZbD91kM92Z-Wb7zXwAt2HENddYer4ivhfpJjcupaQXNwSLY6UoZ74TmyD9fnM0ooOCm2N7YfL5EJsLN-sZLl5bB1dTqX94OR9P1IMppmzjdTmyKjIlKLffk2FvG4qpkz01dQb1KLFUntqayrNd_RuWurySHPxzR4ewXwBK1MpPQA12VFaHvVxiclWHymvx87wO1cFatmB1BPfmfKC5E8Ex8Q5JZYV_7U0hmmjU6qJxhj431LBjGCadj6dnr1BO8JYGX2GPCMFjoUVsZ-9opbBiTGDhm-oIRyqgDcKxIIwFoVYGAJoczSPCBBUh15KaDH4CpWySqVNABAeYhUyblaHtum0yJqNASIPsYhmz4AzunE3SaT4dI11XFdYYqTNG-th967in87-8fAOVQTtJe93-ywVUAwMmcorWJZQWs6W6gl3xtRjPZ9fFV_8GsNiu3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+selective+deployment+of+AI+in+healthcare&rft.jtitle=Bioethics&rft.au=Vandersluis%2C+Robert&rft.au=Savulescu%2C+Julian&rft.date=2024-06-01&rft.issn=0269-9702&rft.eissn=1467-8519&rft.volume=38&rft.issue=5&rft.spage=391&rft.epage=400&rft_id=info:doi/10.1111%2Fbioe.13281&rft.externalDBID=10.1111%252Fbioe.13281&rft.externalDocID=BIOE13281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-9702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-9702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-9702&client=summon |