Appendix C: Quaternions and special relativity
Complex numbers unify algebra and two dimensional geometry representing rotations on the plane as multiplication by a complex number. This appendix introduces quaternions as an extension of this unification to four dimensions. The quaternion gradient is defined, the quaternion analogues of the Cauch...
Uloženo v:
| Vydáno v: | Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box s. 293 - 310 |
|---|---|
| Hlavní autor: | |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, NJ, USA
John Wiley & Sons, Inc
03.12.2004
|
| Témata: | |
| ISBN: | 9780471443384, 0471443387 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Complex numbers unify algebra and two dimensional geometry representing rotations on the plane as multiplication by a complex number. This appendix introduces quaternions as an extension of this unification to four dimensions. The quaternion gradient is defined, the quaternion analogues of the Cauchy‐Riemann equations is obtained, and basic quaternion integral theorems are derived. A pedagogic derivation of the quaternion representation of three‐dimensional rotations widely applied in robotics and computer graphics is presented. The appendix closes with a detailed discussion on the application of biquaternions in relativity. |
|---|---|
| ISBN: | 9780471443384 0471443387 |
| DOI: | 10.1002/0471713465.app3 |

