基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法

针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能.首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10 kV配电网仿真模型进行算例分析.结果...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电力系统保护与控制 Jg. 52; H. 24; S. 149 - 160
Hauptverfasser: 罗国敏, 杨雪凤, 尚博阳, 罗思敏, 和敬涵, 王小君
Format: Journal Article
Sprache:Chinesisch
Veröffentlicht: 北京交通大学电气工程学院,北京 100044 16.12.2024
Schlagworte:
ISSN:1674-3415
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能.首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10 kV配电网仿真模型进行算例分析.结果表明,该方法在-1 dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值.
AbstractList 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能.首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10 kV配电网仿真模型进行算例分析.结果表明,该方法在-1 dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值.
Abstract_FL A novel approach based on an improved stacked denoised autoencoder for detecting high impedance faults in distribution networks is proposed.This aims to tackle challenges such as the selection of suitable thresholds,susceptibility to high noise levels,and low recognition accuracy.This method enhances reliability and noise resistance through two key avenues:feature extraction and network model refinement.First,by integrating time-frequency data analysis techniques,the method captures distinctive physical characteristics distinguishing high impedance grounding faults from normal operational states.This forms the foundation for constructing a fault sample feature library.Secondly,fault features across time,frequency,and time-frequency domains are filtered using Pearson correlation coefficients to create a streamlined multi-domain feature fusion sample library,reducing redundancy and enhancing computational efficiency within the network model.Leveraging the strong high-dimensional feature classification capabilities of an enhanced extreme learning machine,the stacked denoising autoencoder model is refined to boost the robustness and accuracy of the high impedance grounding fault classifier.Finally,a Matlab/Simulink simulation model of a 10 kV distribution network is used for illustrative analysis.The results show that the method still has 95.57%accuracy of high impedance fault detection in the condition of-1 dB strong noise,which has high engineering practical value.
Author 罗国敏
王小君
罗思敏
杨雪凤
尚博阳
和敬涵
AuthorAffiliation 北京交通大学电气工程学院,北京 100044
AuthorAffiliation_xml – name: 北京交通大学电气工程学院,北京 100044
Author_FL SHANG Boyang
WANG Xiaojun
LUO Guomin
LUO Simin
HE Jinghan
YANG Xuefeng
Author_FL_xml – sequence: 1
  fullname: LUO Guomin
– sequence: 2
  fullname: YANG Xuefeng
– sequence: 3
  fullname: SHANG Boyang
– sequence: 4
  fullname: LUO Simin
– sequence: 5
  fullname: HE Jinghan
– sequence: 6
  fullname: WANG Xiaojun
Author_xml – sequence: 1
  fullname: 罗国敏
– sequence: 2
  fullname: 杨雪凤
– sequence: 3
  fullname: 尚博阳
– sequence: 4
  fullname: 罗思敏
– sequence: 5
  fullname: 和敬涵
– sequence: 6
  fullname: 王小君
BookMark eNotjz1Lw0AAQG-oYK39Ba6uifeZ5EYpfkHRpXtJL3fSKGk1iKuC1UFaEdrS1IIBEaQugnRoVfwz5tL8Cws6ve093grIBY1AArCGoIm47ZAN3xTBUd1shk1hYgoZoTmQR5ZNDUIRWwbFMKzXICSIMcvhebCfPM5-Zh3dnc6_H5L4OrmLs6idROP5zTj97KfxZRK9pMOrrNVOu5P06z57HWSDD915TkZvutfKhiP9dKEnt7o_1e-9VbCk3ONQFv9ZAJXtrUpp1ygf7OyVNstGyDkzBIJMIksiDBVHxJNIMGW7yrOQzRRn0vE84YmaIohiSaWkFFsC2hbFtsO5IgWw_qc9dwPlBodVv3F2GiyCVd87wRDTxTpi5BfzOm4K
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.240534
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL High impedance grounding fault detection method of a distribution network based on an improved stacked denoised autoencoder
EndPage 160
ExternalDocumentID jdq202424015
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s995-c105e16e120f913de1c5f7afd6175f95e8ddcdcbf3142e4ee4426c076427899f3
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords 极限学习机
extreme learning machine
high impedance fault
distribution network
stacked denoised autoencoder
配电网
多域特征融合
高阻接地故障
multi-domain feature fusion
堆叠降噪自编码器
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s995-c105e16e120f913de1c5f7afd6175f95e8ddcdcbf3142e4ee4426c076427899f3
PageCount 12
ParticipantIDs wanfang_journals_jdq202424015
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 北京交通大学电气工程学院,北京 100044
Publisher_xml – name: 北京交通大学电气工程学院,北京 100044
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4878109
Snippet 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法...
SourceID wanfang
SourceType Aggregation Database
StartPage 149
Title 基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法
URI https://d.wanfangdata.com.cn/periodical/jdq202424015
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Na9RANNTqwYsoKn5VenBOsjVfk8wcJ7tZPEjxsEhvZTcfWpVYu7UUTwpWD9KK0Ja2FiyIIPUiSA-tin_GzXbP_gHfe0l2oxXUg5fwMvPevK-dzJvZmTeadiloNg3RdKIKl1yv2C29VWlZrl2BCZDecnQrEJTA9MY1d3xcTEzI60OHvhdnYebuukki5ufl9H91NZSBs_Ho7D-4u98oFAAMTocnuB2ef-V45nMm68xTzLfxKXzmO0wCLJkvmFdn0kMcpTPhICDqCPuSSclEjcglUwqRhUuAy7wqkw4CSGUUOAJLJLCwkVxwIneJFyeqGpMGVimPSUEsQAAP5QGpFKd2qszTSUKOLSCOwkIoURbuwwAAWhNEBTKgFvC0WHZrZhFYl_gCsiIdXUTzMsBDm6BBQP0aCaCYsqlE5CZCkVwiByH7C5aFHlQDrXq1Qtj6AMXBRlWmoUcm42Q7e4DCUU2Z1dQIyKxh_YaRQ_tPfmGUL82YlAAyOzlKnYlarBId-VtVCyDzSsEVXjP1FIjqlOzlkGQ2ieiSV1zURXglZPpxKBM65EF2lw36w740vDnQDSFu4eXxj5ulfm7apdHMyLLJ5oGRkV38cGDMxcVDGnSD5M7U2HR7OhiDMJHna9Q_JzO_Hd5HQ0E9JoY4bLpcGqV1kDxmxNPYpUEHk-T132E-4jhyMIe2IKQuX-nADfjU8HxrAIZjpsQshriVua99nn0MBb9yUGw6vpfEzeRmKdJsHNeO5VPEUZV17RPa0MNbJ7Xxzuu9b3tL6fLu_tdXna2nnRdbvfXFzvr2_rPt7ufV7tbjzvq77saT3sJid3mn--Vl7_1ab-1TuvS2s_khXVnobWymbx6lO8_T1d3048oprVH3G9WrlfwulEobcygEMA2KDCcyTD2WhhVGRsBjtxmHMAHhseSRCMMgDFqxZdhmZEeRDZF3oLsO3qQjZWyd1oaTe0l0RhvlraAJs5QAbCxs2xLCFnHMBWb9CoGBOKuN5OpP5l-19mTZbef-UH9eOzroCxe04dmZB9GIdiSYm51qz1wkX_8A3JO5IA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E5%A0%86%E5%8F%A0%E9%99%8D%E5%99%AA%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E9%AB%98%E9%98%BB%E6%8E%A5%E5%9C%B0%E6%95%85%E9%9A%9C%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E7%BD%97%E5%9B%BD%E6%95%8F&rft.au=%E6%9D%A8%E9%9B%AA%E5%87%A4&rft.au=%E5%B0%9A%E5%8D%9A%E9%98%B3&rft.au=%E7%BD%97%E6%80%9D%E6%95%8F&rft.date=2024-12-16&rft.pub=%E5%8C%97%E4%BA%AC%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100044&rft.issn=1674-3415&rft.volume=52&rft.issue=24&rft.spage=149&rft.epage=160&rft_id=info:doi/10.19783%2Fj.cnki.pspc.240534&rft.externalDocID=jdq202424015
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg