A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication

We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast output-sensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 61; číslo 1; s. 36 - 50
Hlavný autor: Lingas, Andrzej
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.09.2011
Predmet:
ISSN:0178-4617, 1432-0541, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast output-sensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainly. Its worst-case time performance is expressed in terms of the input size and the number of non-zero entries of the product matrix. It runs in time , where the input matrices have size n × n , the number of non-zero entries in the product matrix is at most s , ω is the exponent of the fast matrix multiplication and denotes O ( f ( n )log  d n ) for some constant d . By the currently best bound on ω , its running time can be also expressed as . Our algorithm is substantially faster than the output-sensitive column-row method for Boolean matrix product for s larger than n 1.232 and it is never slower than the fast -time algorithm for this problem. By applying the fast rectangular matrix multiplication, we can refine our upper bound further to the form , where ω ( p , q , t ) is the exponent of the fast multiplication of an n p × n q matrix by an n q × n t matrix. We also present a partial derandomization of our algorithm as well as its generalization to include the Boolean product of rectangular Boolean matrices. Finally, we show several applications of our output-sensitive algorithms.
AbstractList We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast outputsensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainly. Its worst-case time performance is expressed in terms of the input size and the number of non-zero entries of the product matrix. It runs in time (O) over tilde (n(2)s(omega/2-1)), where the input matrices have size nxn, the number of non-zero entries in the product matrix is at most s, omega is the exponent of the fast matrix multiplication and (O) over tilde (f(n)) denotes O(f(n)log(d) n) for some constant d. By the currently best bound on., its running time can be also expressed as (O) over tilde (n(2)s(0.188)). Our algorithm is substantially faster than the output-sensitive column-row method for Boolean matrix product for s larger than n(1.232) and it is never slower than the fast (O) over tilde (n(omega))-time algorithm for this problem. By applying the fast rectangular matrix multiplication, we can refine our upper bound further to the form (O) over tilde (n(omega(1/2) (logns, 1,1))), where omega(p, q, t) is the exponent of the fast multiplication of an n(p) x n(q) matrix by an n(q) x n(t) matrix. We also present a partial derandomization of our algorithm as well as its generalization to include the Boolean product of rectangular Boolean matrices. Finally, we show several applications of our output-sensitive algorithms.
We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast output-sensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainly. Its worst-case time performance is expressed in terms of the input size and the number of non-zero entries of the product matrix. It runs in time , where the input matrices have size n × n , the number of non-zero entries in the product matrix is at most s , ω is the exponent of the fast matrix multiplication and denotes O ( f ( n )log  d n ) for some constant d . By the currently best bound on ω , its running time can be also expressed as . Our algorithm is substantially faster than the output-sensitive column-row method for Boolean matrix product for s larger than n 1.232 and it is never slower than the fast -time algorithm for this problem. By applying the fast rectangular matrix multiplication, we can refine our upper bound further to the form , where ω ( p , q , t ) is the exponent of the fast multiplication of an n p × n q matrix by an n q × n t matrix. We also present a partial derandomization of our algorithm as well as its generalization to include the Boolean product of rectangular Boolean matrices. Finally, we show several applications of our output-sensitive algorithms.
Author Lingas, Andrzej
Author_xml – sequence: 1
  givenname: Andrzej
  surname: Lingas
  fullname: Lingas, Andrzej
  email: Andrzej.Lingas@cs.lth.se
  organization: Department of Computer Science, Lund University
BookMark eNo1kM1O3DAUha2KSh2gD8AuL2DwdWzHWQ4jfiqBWLSsr5zkGoxCHNkODG9P0NDV2Rydn--YHU1xIsbOQJyDEM1FFkLpmgsQvFUK-P4H24CqJRdawRHbCGgsVwaaX-w45xchQDat2bDdtrp2uVQPS5mXwv_SlEMJb1Rtx6eYQnl-rXxM1WWMI7mpunclhX11v4wlzGPoXQlxOmU_vRsz_f7WE_Z4ffVvd8vvHm7-7LZ3PEtrC_ekm060A7SyHzpvoWup99a2RoDujCXhjYFh0CShXs1aejf4zkk3tKDI1SfMHXLzO81Lh3MKry59YHQB55iKGzFRJpf6ZxwXzISr6__IjF2jnVSO0PRCo9KS0Bry2JGua6iNbGy_dsjvjjV9eqKEL3FJ03oLQeAXajygxhU1fqHGff0JTqR2lA
Cites_doi 10.1016/0020-0190(71)90006-8
10.1006/jcom.1998.0476
10.4007/annals.2004.160.781
10.1023/A:1009716300509
10.1007/BF01940874
10.1016/0885-064X(89)90015-0
10.1016/S0019-9958(85)80024-3
10.1016/0304-3975(75)90009-2
10.1016/S0747-7171(08)80013-2
10.1007/3-540-49543-6_18
10.1006/jcss.1999.1690
10.1137/0204027
10.1016/j.tcs.2007.02.053
10.1214/aop/1176996762
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
DBID ADTPV
AOWAS
D95
DOI 10.1007/s00453-010-9441-x
DatabaseName SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 50
ExternalDocumentID oai_portal_research_lu_se_publications_b75a24ae_6c05_452e_86ef_be533136278c
10_1007_s00453_010_9441_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADTPV
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AOWAS
ATHPR
AYFIA
D95
ID FETCH-LOGICAL-s288t-fe57b09d192cdbf81b9ecf8896015b68e0f661dd5e213fe552fadfba2ad914ea3
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291481900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
1432-0541
IngestDate Wed Oct 15 12:44:56 EDT 2025
Fri Feb 21 02:43:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rectangular matrix multiplication
Boolean matrix multiplication
Time complexity
Output-sensitive algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s288t-fe57b09d192cdbf81b9ecf8896015b68e0f661dd5e213fe552fadfba2ad914ea3
PageCount 15
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_b75a24ae_6c05_452e_86ef_be533136278c
springer_journals_10_1007_s00453_010_9441_x
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2011
Publisher Springer US
Publisher_xml – name: Springer US
References Joffe (CR18) 1974; 2
Schnorr, Subramanian (CR27) 1998
Huang, Pan (CR17) 1998; 14
CR14
Pratt (CR23) 1975; 4
George, Gilbert, Liu (CR15) 1993
Golub, Van Loan (CR16) 1989
Kowaluk, Lingas (CR19) 2005
Rytter (CR24) 1985; 67
Alon, Naor (CR2) 1996; 16
Cohen (CR10) 1999; 2
Arlazow, Dinic, Kronrod, Faradzev (CR5) 1970; 11
CR4
Broder, Charikar, Frieze, Mitzenmacher (CR7) 2000; 60
Coppersmith (CR11) 1997; 13
CR3
CR6
Chor, Goldreich (CR8) 1989; 5
CR29
CR28
CR9
CR26
Agrawal, Kayal, Saxena (CR1) 2004; 160
CR25
Czumaj, Kowaluk, Lingas (CR13) 2007; 380
CR20
Munro (CR21) 1971; 1
Coppersmith, Winograd (CR12) 1990; 9
Paterson (CR22) 1975; 1
References_xml – volume: 1
  start-page: 56
  issue: 2
  year: 1971
  end-page: 58
  ident: CR21
  article-title: Efficient determination of the transitive closure of a directed graph
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(71)90006-8
– ident: CR4
– ident: CR14
– volume: 14
  start-page: 257
  year: 1998
  end-page: 299
  ident: CR17
  article-title: Fast rectangular matrix multiplications and applications
  publication-title: J. Complex.
  doi: 10.1006/jcom.1998.0476
– volume: 160
  start-page: 781
  issue: 2
  year: 2004
  end-page: 793
  ident: CR1
  article-title: PRIMES is in P
  publication-title: Ann. Math.
  doi: 10.4007/annals.2004.160.781
– volume: 2
  start-page: 307
  year: 1999
  end-page: 332
  ident: CR10
  article-title: Structure prediction and computation of sparse matrix products
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009716300509
– volume: 16
  start-page: 434
  year: 1996
  end-page: 449
  ident: CR2
  article-title: Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions
  publication-title: Algorithmica
  doi: 10.1007/BF01940874
– volume: 5
  start-page: 96
  year: 1989
  end-page: 106
  ident: CR8
  article-title: On the power of two-point sampling
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(89)90015-0
– ident: CR6
– ident: CR29
– volume: 67
  start-page: 12
  issue: 1–3
  year: 1985
  end-page: 22
  ident: CR24
  article-title: Fast recognition of pushdown automaton and context-free languages
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(85)80024-3
– ident: CR25
– year: 1993
  ident: CR15
  publication-title: Graph Theory and Sparse Matrix Computation
– volume: 1
  start-page: 13
  issue: 1
  year: 1975
  end-page: 20
  ident: CR22
  article-title: Complexity of monotone networks for Boolean matrix product
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(75)90009-2
– year: 1989
  ident: CR16
  publication-title: Matrix Computations
– volume: 9
  start-page: 251
  year: 1990
  end-page: 280
  ident: CR12
  article-title: Matrix multiplication via arithmetic progressions
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80013-2
– ident: CR3
– volume: 13
  start-page: 42
  year: 1997
  end-page: 49
  ident: CR11
  article-title: Rectangular matrix multiplication revisited
  publication-title: J. Symb. Comput.
– ident: CR9
– start-page: 218
  year: 1998
  end-page: 231
  ident: CR27
  article-title: Almost optimal (on the average) combinatorial algorithms for Boolean matrix product witnesses, computing the diameter
  publication-title: Randomization and Approximation Techniques in Computer Science, Second International Workshop, RANDOM’98
  doi: 10.1007/3-540-49543-6_18
– volume: 60
  start-page: 630
  year: 2000
  end-page: 659
  ident: CR7
  article-title: Min-wise independent permutations
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1999.1690
– start-page: 241
  year: 2005
  end-page: 248
  ident: CR19
  article-title: LCA queries in directed acyclic graphs
  publication-title: Proc. ICALP 2005
– volume: 4
  start-page: 326
  issue: 3
  year: 1975
  end-page: 330
  ident: CR23
  article-title: The power of negative thinking in multiplying Boolean matrices
  publication-title: SIAM J. Comput.
  doi: 10.1137/0204027
– ident: CR28
– volume: 380
  start-page: 37
  issue: 1–2
  year: 2007
  end-page: 46
  ident: CR13
  article-title: Faster algorithms for finding lowest common ancestors in directed acyclic graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.02.053
– ident: CR26
– volume: 11
  start-page: 1209
  year: 1970
  end-page: 1210
  ident: CR5
  article-title: On economical construction of the transitive closure of an oriented graph
  publication-title: Sov. Math. Dokl.
– volume: 2
  start-page: 161
  year: 1974
  end-page: 162
  ident: CR18
  article-title: On a set of almost deterministic k-independent random variables
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176996762
– ident: CR20
SSID ssj0012796
Score 1.9866315
Snippet We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast...
SourceID swepub
springer
SourceType Open Access Repository
Publisher
StartPage 36
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer and Information Sciences
Computer Science
Computer Sciences
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Data- och informationsvetenskap (Datateknik)
Datavetenskap (Datalogi)
Mathematics of Computing
Natural Sciences
Naturvetenskap
Theory of Computation
Title A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication
URI https://link.springer.com/article/10.1007/s00453-010-9441-x
Volume 61
WOSCitedRecordID wos000291481900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPXixPrG-yMGbBPaVTfZYi8WDrUK1FC8hT1uou6W7lf58k32UIl70nGUJs5vMNzPffAPAbZQIExghkYk5QVHEQyRIKJASIjSK2JWykXb8RIZDOpkkL3Ufd96w3ZuSZHlTb5rdHPpw3B8PJdaHIwscd7ETm3Eh-mi8KR0EpBzK5cbOo8j656aU-dsrtsqfP6RCS_fSb_9rY4fgoEaTsFt9_iOwo9Nj0G4mNcD64J6AXhf2eV7A51VhV9DIsdbdPQe7849sOSumn9CCV3ifZXPNUzhwuv1rOKjIhnVW7xS89R9ee4-oHp-A8oDSAhmNifASZTGcVMJYfJpoaSi1MYuPRUy1Z6xzVgrrwA_twzgwXBnBA64SP9I8PAOtNEv1OYBGxMZCLyNDG09SngjfJ9zzFSceVtyXHXDXmIbVZyBnG0Hk0j7M2oc5-7B1B7xXpmaLSlGDOY3rKtxgtcbRlM1XLNdssZW8ZIJgHkRcs1h6mEU40IzG2jChLWj1rSsmVF78aSuXYL9KEjvS2BVoFcuVvgZ78quY5cub8sf6BukLznQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6igl6sT3ybgzcJ7Cub7LEWS8W2ClYRL0OySaxQu9Ldij_fZB9FxIuesyxhdpP5ZuabbxA6jxJpAiNTYmLBSBSJkEgWSqKkDI1idqVspH3ss-GQPz0ld3Ufd96w3ZuSZHlTL5rdHPpw3B-PJNaHEwscVyI3ZceF6PePi9JBwMqhXG7sPImsf25Kmb-94lv584dUaOleuq1_bWwTbdRoErerz7-FlvR0G7WaSQ24Prg7qNPGXZEX-HZe2BVy71jr7p7D7clLNnstxm_Ygld8mWUTLaZ44HT7P_GgIhvWWb1d9NC9GnV6pB6fQPKA84IYTZn0EmUxXKqksfg00anh3MYsPpUx156xzlkpqgM_tA_TwAhlpAiESvxIi3APLU-zqd5H2MjYWOhl0tDGk1wk0veZ8HwlmEeV8NMDdNGYBuozkMNCELm0D1j7gLMPfB6g58rU8F4paoDTuK7CDag1jsYwmUOu4f1b8hIkoyKIhIY49ShENNDAY21AagtafeuKGU8P_7SVM7TWGw360L8e3hyh9Sph7Ahkx2i5mM31CVpNP4rXfHZa_mRfoMjRWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBbBCaWXOOmD5q1Db0Vk39IenYdJiO2Yug2ml0FaSU3AWRvvOvjnZ7QPE0ovpWctixgkzTcz33xDyNcoVTawKmM2kZxFkQyZ4qFiWqnQao4rVSPtw4CPRmI6TcfNnNOiZbu3Jcm6p8GpNOXl-ULb803jm0MijgfksRT9OUMQuR1hIOM4Xd8nD5syQsCrAV1uBD2L0Fe3Zc2__eJNKfQP2dDK1fS7_73JPbLboEzaq4_FPtky-QfSbSc40OZCfySXPdqXRUnvVyWusIljs7v3j_Zmv-fLp_LxmSKopRfz-czInA6dnv-aDmsSYpPt-0R-9q9_XN6wZqwCKwIhSmZNzJWXasR2mVYWcWtqMisExjJ-rBJhPItOW-vYBH6IH8eBldoqGUid-pGR4WfSyee5-UKoVYlFSGazEONMIVPl-1x6vpbci7X0swPyrTUTNHejgI1QcmUfQPuAsw-sD8iv2uywqJU2wGlf12EINNpHjzBbQWFg8SapCYrHMoikgSTzYojiwIBIjAVlEMz66KK5yA7_aStn5N34qg-D29HdEXlf55Edr-yYdMrlypyQneylfCqWp9V5ewXZ_to8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Output-Sensitive+Algorithm+for+Boolean+Matrix+Multiplication&rft.jtitle=Algorithmica&rft.au=Lingas%2C+Andrzej&rft.date=2011-09-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=61&rft.issue=1&rft.spage=36&rft.epage=50&rft_id=info:doi/10.1007%2Fs00453-010-9441-x&rft.externalDocID=10_1007_s00453_010_9441_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon