Manipulation of Na3V2(PO4)2F3 via aluminum doping to alter local electron states toward an advanced cathode for sodium-ion batteries
With its unique 3D skeleton structure and exceptional cyclic stability, the Na + superionic conductor (NASICON)-type Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) has been considered as a competitive cathode material for advanced Na-ion batteries. However, the release of fluorine during the heat treatment leads to...
Saved in:
| Published in: | Rare metals Vol. 43; no. 9; pp. 4253 - 4262 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beijing
Nonferrous Metals Society of China
01.09.2024
|
| Subjects: | |
| ISSN: | 1001-0521, 1867-7185 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With its unique 3D skeleton structure and exceptional cyclic stability, the Na
+
superionic conductor (NASICON)-type Na
3
V
2
(PO
4
)
2
F
3
(NVPF) has been considered as a competitive cathode material for advanced Na-ion batteries. However, the release of fluorine during the heat treatment leads to the formation of an additional phase Na
3
V
2
(PO
4
)
3
(NVP), which results in a low-voltage plateau and compromises the energy density. Herein, we modulate the local electronic states of the V site by aluminum substitution to strengthen the stability of F. The results confirm that the aluminum introduction not only changes the local electron states of V sites, significantly reducing the formation of NVP by-product from 6.71 wt% to 1.01 wt%, but also effectively reduces the band gap, improving the electronic conductivity of NVPF. The optimized Na
3
V
1.9
Al
0.1
(PO
4
)
2
F
3
exhibits higher energy density of 340 Wh·kg
−1
and excellent rate performance of 106.7 mAh·g
−1
at 10C compared with the pristine cathode.
Graphical abstract |
|---|---|
| AbstractList | With its unique 3D skeleton structure and exceptional cyclic stability, the Na+ superionic conductor (NASICON)‐type Na3V2(PO4)2F3 (NVPF) has been considered as a competitive cathode material for advanced Na‐ion batteries. However, the release of fluorine during the heat treatment leads to the formation of an additional phase Na3V2(PO4)3 (NVP), which results in a low‐voltage plateau and compromises the energy density. Herein, we modulate the local electronic states of the V site by aluminum substitution to strengthen the stability of F. The results confirm that the aluminum introduction not only changes the local electron states of V sites, significantly reducing the formation of NVP by‐product from 6.71 wt% to 1.01 wt%, but also effectively reduces the band gap, improving the electronic conductivity of NVPF. The optimized Na3V1.9Al0.1(PO4)2F3 exhibits higher energy density of 340 Wh·kg−1 and excellent rate performance of 106.7 mAh·g−1 at 10C compared with the pristine cathode.
Graphical
摘要凭借其独特的3D骨架结构和卓越的循环稳定性,NASICON型Na3V2(PO4)2F3(NVPF)被认为是先进钠离子电池极具竞争力的正极材料。然而,在热处理过程中氟的释放导致形成额外的Na3V2(PO4)3(NVP)相,从而引发了低电压平台并损害其能量密度。本文通过Al取代V来调制V位的局部电子,从而增强F的稳定性。结果证实,Al的引入不仅改变了V位的局部电子态,使NVP副产物的形成从6.71 wt%显著降低到1.01 wt%,而且有效地减小了带隙,提高了NVPF材料的电子导电性。与原始正极材料相比,优化后的Na3V1.9Al0.1(PO4)2F3具有更高的能量密度(340 Wh·kg‒1)和更好的倍率性能(10C 下放电106.7 mAh·g‒1)。 With its unique 3D skeleton structure and exceptional cyclic stability, the Na + superionic conductor (NASICON)-type Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) has been considered as a competitive cathode material for advanced Na-ion batteries. However, the release of fluorine during the heat treatment leads to the formation of an additional phase Na 3 V 2 (PO 4 ) 3 (NVP), which results in a low-voltage plateau and compromises the energy density. Herein, we modulate the local electronic states of the V site by aluminum substitution to strengthen the stability of F. The results confirm that the aluminum introduction not only changes the local electron states of V sites, significantly reducing the formation of NVP by-product from 6.71 wt% to 1.01 wt%, but also effectively reduces the band gap, improving the electronic conductivity of NVPF. The optimized Na 3 V 1.9 Al 0.1 (PO 4 ) 2 F 3 exhibits higher energy density of 340 Wh·kg −1 and excellent rate performance of 106.7 mAh·g −1 at 10C compared with the pristine cathode. Graphical abstract |
| Author | Xu, Li Huang, Wen-Jin Ren, Fu-Tong Guo, Hong Wang, Shi-Min Liu, Qing Duan, Ling-Yan Ma, Hang Li, Jin-Qi Sun, Yong-Jiang Sun, Meng-Jiao |
| Author_xml | – sequence: 1 givenname: Shi-Min surname: Wang fullname: Wang, Shi-Min organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 2 givenname: Jin-Qi surname: Li fullname: Li, Jin-Qi organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 3 givenname: Li surname: Xu fullname: Xu, Li organization: College of Environmental and Chemical Engineering, Metallurgy College – sequence: 4 givenname: Meng-Jiao surname: Sun fullname: Sun, Meng-Jiao organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 5 givenname: Wen-Jin surname: Huang fullname: Huang, Wen-Jin organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 6 givenname: Qing surname: Liu fullname: Liu, Qing organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 7 givenname: Fu-Tong surname: Ren fullname: Ren, Fu-Tong organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 8 givenname: Yong-Jiang surname: Sun fullname: Sun, Yong-Jiang organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 9 givenname: Ling-Yan surname: Duan fullname: Duan, Ling-Yan organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University – sequence: 10 givenname: Hang surname: Ma fullname: Ma, Hang email: hang.ma@yprtec.com organization: R & D Center, Yunnan Yuntianhua Co., Ltd – sequence: 11 givenname: Hong orcidid: 0000-0001-5693-2980 surname: Guo fullname: Guo, Hong email: guohong@ynu.edu.cn organization: International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Southwest United Graduate School |
| BookMark | eNp9kD1PwzAQhi1UJD7_AJNHGAJnx4ldMRVEAalQhIDVcuILGKV2FSetuvPDMZSZ4XQnW89zp_eAjHzwSMgJg3MGIC8i48VYZcBFKillpnbIPlOlzCRTxSjNACyDgrM9chDjJ4AQZQn75OvBeLccWtO74Glo6KPJ3_jp01yc8WlOV85Q0w4L54cFtWHp_DvtQ3rqsaNtqE1LscW67xIce9NjTN9r01lqPDV2ZXyNltam_wgWaRM6GoN1wyL72VaZPmkcxiOy25g24vFfPySv05uX67tsNr-9v57MssgLJjPeFNBwgSgkqySKcSmgVlU1ZkVdsQorwHHNLJRNrpiSyHJjc1vJQsmCg6jzQ3K59a5dixu97NzCdBvNQP-EqLch6hSi_g1RK_08eeZXU-BJkeh8S8cE-nfs9GcYOp8O_seQfwNyRHqr |
| Cites_doi | 10.1039/C8QI01374H 10.1021/acsami.7b16901 10.1016/j.ensm.2020.04.040 10.1002/idm2.12040 10.1016/J.CEJ.2017.09.012 10.1002/advs.201600275 10.1016/J.JPOWSOUR.2014.01.025 10.1002/adma.201701968 10.1016/J.NANOEN.2018.02.053 10.1016/j.jelechem.2019.113694 10.1016/j.jechem.2022.07.010 10.1002/aenm.201700514 10.1002/advs.201700768 10.1107/S1600536810002801 10.1039/C7EE00566K 10.1007/s12598-018-1149-0 10.1039/C5TA05939A 10.1002/anie.201915650 10.1016/j.jallcom.2019.03.127 10.1007/s12598-021-01743-y 10.1002/er.5397 10.1016/j.ensm.2021.01.029 10.1006/JSSC.1999.8447 10.1002/aenm.201902056 10.1021/acsaem.0c00283 10.1039/D0QM00364F 10.3866/PKU.WHXB201903010 10.1039/D3SC03498D 10.1016/j.ceramint.2023.08.039 10.1103/PhysRevB.59.1758 10.1021/acs.chemmater.5b00361 10.1039/C4TA00106K 10.1016/j.molliq.2023.122130 10.1039/C2JM33862A 10.1016/j.cej.2019.123952 10.1007/s12598-022-02051-9 10.1002/aenm.201801064 10.1016/0927-0256(96)00008-0 10.1039/D0QI00872A 10.1039/C7TA03133E 10.1016/j.cej.2023.142464 10.1039/C5TA03528G 10.1016/j.ensm.2019.09.014 10.1021/cm501644g 10.13373/j.cnki.cjrm.XY21010027 10.1016/j.nanoen.2020.105659 10.1002/idm2.12008 10.1039/C9CC05137F |
| ContentType | Journal Article |
| Copyright | Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024 Youke Publishing Co., Ltd. |
| Copyright_xml | – notice: Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024 Youke Publishing Co., Ltd. |
| DOI | 10.1007/s12598-024-02777-8 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1867-7185 |
| EndPage | 4262 |
| ExternalDocumentID | RAR2BF02587 10_1007_s12598_024_02777_8 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Yunnan Province grantid: 202201AS070144 funderid: http://dx.doi.org/10.13039/501100005273 – fundername: National Natural Science Foundation of China grantid: 52064049 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China funderid: 52064049 – fundername: Natural Science Foundation of Yunnan Province funderid: 202201AS070144 |
| GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEUYN AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-s2517-2f50f24ee471b7e49640c8bb915cb1beb0e9c1d06f38187e13ad3db75875204c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236100000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1001-0521 |
| IngestDate | Thu Oct 09 10:00:24 EDT 2025 Fri Feb 21 02:39:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Electrochemistry Sodium-ion energy storage batteries Cathode NASICON Doping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-s2517-2f50f24ee471b7e49640c8bb915cb1beb0e9c1d06f38187e13ad3db75875204c3 |
| Notes | The online version contains supplementary material available at https://doi.org/10.1007/s12598‐024‐02777‐8 Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self‐archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Supplementary Information . |
| ORCID | 0000-0001-5693-2980 |
| PageCount | 10 |
| ParticipantIDs | wiley_primary_10_1007_s12598_024_02777_8_RAR2BF02587 springer_journals_10_1007_s12598_024_02777_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 September 2024 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | Rare metals |
| PublicationTitleAbbrev | Rare Met |
| PublicationYear | 2024 |
| Publisher | Nonferrous Metals Society of China |
| Publisher_xml | – name: Nonferrous Metals Society of China |
| References | Huang, Du, Qi, Li, Zhong, Yang, Zhang, Xu (CR16) 2020; 7 Wang, Cai, Zou, Hou, Ji, Tian, Long (CR14) 2022; 41 Lin, Liu, Zhou, Chen, Liu, Zhao, Hou (CR40) 2023; 463 Zhu, Zhang, Sun, Wang, Weng, Tang, Wang (CR2) 2020; 4 Olchowka, Nguyen, Broux, Camacho, Petit, Fauth, Carlier, Masquelier, Croguennec (CR29) 2019; 55 Li, Xu, Chang, Wang, He, Ding (CR21) 2021; 37 Zhao, Yang, Yao, Gao, Sui, Zou, Ehrenberg, Chen, Du (CR36) 2018; 5 Bianchini, Xiao, Wang, Ceder (CR24) 2017; 7 Wang, Zhang, Li, Hu, Lai, Zhang (CR19) 2020; 3 Ortiz-Vitoriano, Drewett, Gonzalo, Rojo (CR7) 2017; 10 Bianchini, Brisset, Fauth, Weill, Elkaim, Suard, Masquelier, Croguennec (CR48) 2014; 26 Yi, Ling, Xu, Li, Zheng, Zhang (CR30) 2018; 47 Ji, Liu, Zhang, Zhang, Zhang, Lian (CR22) 2023; 42 Chen, Su, Zhao, Pu, Li, Wang (CR3) 2023; 47 Zatovsky (CR44) 2010; 66 Deng, Yu, Xia, Jiang, Sui, Zhao, Meng, Que, Wang (CR39) 2021; 82 Xu, Zhang, Zhang, Wu, Zhou, Ai, Qian (CR13) 2023; 14 Liu, Yi, Zhang, Li, Zhang (CR32) 2017; 5 Li, Liu, Tang, Liu, Wang (CR33) 2019; 790 Zhu, Xiao, Hua, Indris (CR8) 2020; 59 Wang, Sun, Liu, Mei, Yang, Duan, Guo (CR10) 2022; 74 Song, Ji, Wu, Yang, Zhou, Li, Chen, Banks (CR35) 2014; 256 Liu, Wang, Yang, Chen, Wang, Bie, Wei, Chen, Du (CR23) 2015; 3 Yang, Li, Sun, Xie, Jiang, Huang, Chen (CR37) 2020; 25 Kresse, Furthmüller (CR46) 1996; 6 Li, Xu, Sun, He, Li (CR20) 2018; 331 Le Meins, Crosnier r-Lopez, Hemon-Ribaud, Courbion (CR42) 1999; 148 Guo, Gu, Zhao, Wang, Yang, Yang, Li, Wu (CR15) 2019; 9 Duan, Zhu, Li, Hu, Zhang, Cheng, Chen (CR27) 2014; 2 Gunawan, Ibrahim, Ivansyah, Damayanti (CR28) 2023; 383 Zhao, Wu, He, Zhang, Wang, Wang, Yu (CR47) 2022; 41 Chaali, Dahbi, Sabbar, Zakaria (CR9) 2023; 49 Zhuang, Yang, Zhang, Rengapillai, Marimuthu, Chiang, Chang, Huang, Liu (CR26) 2022; 434 Wang, Hou, Long, Yang, Wang (CR11) 2019; 35 Criado, Lavela, Pérez-Vicente, Ortiz (CR31) 2020; 856 Wang, Wang, Ding, Wang, Xin, Singh, Wu, Gao (CR6) 2022; 1 Ni, Bai, Wu, Wu (CR18) 2017; 4 Wang, Liu, Yu, Wu (CR4) 2022; 1 Li, Xu, Sun, Chang, Zhang, Zhang, Li (CR38) 2018; 8 Yao, Zhu, Li, Wang, Xu, Meng, Ren, Zhang, Huang, Mai (CR43) 2018; 10 Guo, Wang, Wu, Zhang, Yan, Chen, Zhang, Gou (CR12) 2017; 29 Li, Liu, Tang, Liu, Wang (CR34) 2020; 387 Gao, Zheng, Wang, Wang, Ye (CR5) 2020; 30 Zhan, Fan, Zhang, Yi, Chen, Han, Liu (CR1) 2020; 44 Gu, Guo, Yang, Yu, Xi, Zhao, Guan, He, Wu (CR17) 2019; 6 Bianchini, Fauth, Brisset, Weill, Suard, Masquelier, Croguennec (CR41) 2015; 27 Lalère, Lalère, Seznec, Courty, David, Chotard, Masquelier (CR25) 2015; 3 Kresse, Joubert (CR45) 1999; 59 2017; 5 2017; 7 2019; 9 2023; 14 2019; 6 2017; 4 2015; 3 2023; 383 2019; 55 2019; 35 2023; 463 2014; 26 2020; 59 2022; 41 2020; 387 2017; 29 1999; 148 2022; 434 2018; 47 2014; 256 2023; 42 2020; 7 2010; 66 2018; 331 2021; 37 2018; 8 2020; 4 2023; 47 2020; 3 2015; 27 2018; 5 2014; 2 2020; 30 2023; 49 2017; 10 1999; 59 2020; 25 2022; 74 2020; 44 2022; 1 2019; 790 2021; 82 2018; 10 2020; 856 1996; 6 |
| References_xml | – volume: 6 start-page: 988 issue: 4 year: 2019 ident: CR17 article-title: Precisely controlled preparation of an advanced Na V (PO ) O F cathode material for sodium ion batteries: the optimization of electrochemical properties and electrode kinetics publication-title: Inorg Chem Front doi: 10.1039/C8QI01374H – volume: 10 start-page: 10022 issue: 12 year: 2018 ident: CR43 article-title: 3.0 V high energy density symmetric sodium-ion battery: Na V (PO ) //Na V (PO ) publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b16901 – volume: 30 start-page: 9 year: 2020 ident: CR5 article-title: Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2020.04.040 – volume: 1 start-page: 373 issue: 3 year: 2022 ident: CR6 article-title: The prospect and challenges of sodium-ion batteries for low-temperature conditions publication-title: Interdiscip Mater doi: 10.1002/idm2.12040 – volume: 331 start-page: 712 year: 2018 ident: CR20 article-title: High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na V (PO ) F nanoparticles publication-title: Chem Eng J doi: 10.1016/J.CEJ.2017.09.012 – volume: 4 start-page: 1600275 issue: 3 year: 2017 ident: CR18 article-title: Polyanion-type electrode materials for sodium-ion batteries publication-title: Adv Sci doi: 10.1002/advs.201600275 – volume: 256 start-page: 258 year: 2014 ident: CR35 article-title: Exploration of ion migration mechanism and diffusion capability for Na V (PO ) F cathode utilized in rechargeable sodium-ion batteries publication-title: Banks J Power Sources doi: 10.1016/J.JPOWSOUR.2014.01.025 – volume: 29 start-page: 1701968 issue: 33 year: 2017 ident: CR12 article-title: High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance publication-title: Adv Mater doi: 10.1002/adma.201701968 – volume: 47 start-page: 340 year: 2018 ident: CR30 article-title: VSC-doping and VSU-doping of Na V Ti (PO ) F compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties publication-title: Nano Energy doi: 10.1016/J.NANOEN.2018.02.053 – volume: 856 start-page: 113694 year: 2020 ident: CR31 article-title: Effect of chromium doping on Na V (PO ) F @C as promising positive electrode for sodium-ion batteries publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2019.113694 – volume: 74 start-page: 18 year: 2022 ident: CR10 article-title: An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.07.010 – volume: 7 start-page: 1700514 issue: 18 year: 2017 ident: CR24 article-title: Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201700514 – volume: 5 start-page: 1700768 issue: 4 year: 2018 ident: CR36 article-title: Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery publication-title: Adv Sci doi: 10.1002/advs.201700768 – volume: 66 start-page: i12 issue: Pt2 year: 2010 ident: CR44 article-title: NASICON-type Na(3)V(2)(PO(4))(3) publication-title: Acta Crystallogr D doi: 10.1107/S1600536810002801 – volume: 10 start-page: 1051 issue: 5 year: 2017 ident: CR7 article-title: High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries publication-title: Energy Environ Sci doi: 10.1039/C7EE00566K – volume: 42 start-page: 3870 issue: 11 year: 2023 ident: CR22 article-title: Hydrophobicity and tribological properties of Al O /PTFE composite coating publication-title: Rare Met doi: 10.1007/s12598-018-1149-0 – volume: 3 start-page: 21478 issue: 43 year: 2015 ident: CR23 article-title: Carbon-coated Na V (PO ) F nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life publication-title: J Mater Chem A doi: 10.1039/C5TA05939A – volume: 59 start-page: 9299 issue: 24 year: 2020 ident: CR8 article-title: Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.201915650 – volume: 790 start-page: 203 year: 2019 end-page: 211 ident: CR33 article-title: Improved electrochemical performance of high voltage cathode Na V (PO ) F for Na-ion batteries through potassium doping publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.03.127 – volume: 41 start-page: 115 issue: 1 year: 2022 ident: CR14 article-title: Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery publication-title: Rare Met doi: 10.1007/s12598-021-01743-y – volume: 44 start-page: 6608 issue: 8 year: 2020 ident: CR1 article-title: Ultra-long cycle life and high rate performance subglobose Na V (PO ) F @C cathode and its regulation publication-title: Int J Energy Res doi: 10.1002/er.5397 – volume: 37 start-page: 325 year: 2021 ident: CR21 article-title: Unraveling the mechanism of optimal concentration for Fe substitution in Na V (PO4) F /C for Sodium-Ion batteries publication-title: Energy Stor Mater doi: 10.1016/j.ensm.2021.01.029 – volume: 148 start-page: 260 issue: 2 year: 1999 ident: CR42 article-title: Phase transitions in the Na M (PO ) F Family (M=Al , V , Cr , Fe , Ga ): synthesis, thermal, structural, and magnetic studies publication-title: J Solid State Chem doi: 10.1006/JSSC.1999.8447 – volume: 9 start-page: 1902056 issue: 38 year: 2019 ident: CR15 article-title: Flexible Na/K-Ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode publication-title: Adv Energy Mater doi: 10.1002/aenm.201902056 – volume: 3 start-page: 3845 year: 2020 ident: CR19 article-title: N-doped carbon nanotubes decorated Na V (PO ) F as a durable ultrahigh-rate cathode for sodium ion batteries publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c00283 – volume: 4 start-page: 2932 issue: 10 year: 2020 ident: CR2 article-title: Engineering the crystal orientation of Na V (PO ) F @rGO microcuboids for advanced sodium-ion batteries publication-title: Mater Chem Front doi: 10.1039/D0QM00364F – volume: 35 start-page: 1319 issue: 12 year: 2019 ident: CR11 article-title: Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials publication-title: Acta Phys Chim Sin doi: 10.3866/PKU.WHXB201903010 – volume: 14 start-page: 12570 issue: 44 year: 2023 ident: CR13 article-title: Controllable synthesis of a Na-enriched Na V (PO ) cathode for high-energy sodium-ion batteries: a redox-potential-matched chemical sodiation approach publication-title: Chem Sci doi: 10.1039/D3SC03498D – volume: 49 start-page: 33607 issue: 21 year: 2023 ident: CR9 article-title: Comparative study of Na Ni Co Mn O P-type cathode materials for sodium-ion batteries: combustion synthesis and combined analysis of structural, electrical, and dielectric properties publication-title: Ceram Int doi: 10.1016/j.ceramint.2023.08.039 – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: CR45 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.1758 – volume: 27 start-page: 3009 issue: 8 year: 2015 ident: CR41 article-title: Comprehensive investigation of the Na V (PO ) F –NaV (PO ) F system by operando high resolution synchrotron X-ray diffraction publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b00361 – volume: 2 start-page: 8668 issue: 23 year: 2014 ident: CR27 article-title: Na V (PO ) @C core–shell nanocomposites for rechargeable sodium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C4TA00106K – volume: 383 start-page: 122130 year: 2023 ident: CR28 article-title: Insights into the selective imprinted polymer of voriconazole from host-guest interaction perspective publication-title: J Mol Liq doi: 10.1016/j.molliq.2023.122130 – volume: 434 start-page: 128184 year: 2022 ident: CR26 article-title: A combined first principles and experimental study on Al-doped Na V (PO ) F cathode for rechargeable Na batteries publication-title: Surf Coat Technol doi: 10.1039/C2JM33862A – volume: 387 start-page: 123952 year: 2020 ident: CR34 article-title: In-situ constructing Na V (PO ) F /carbon nanocubes for fast ion diffusion with high-performance Na -storage publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123952 – volume: 41 start-page: 3412 issue: 10 year: 2022 ident: CR47 article-title: Theoretical research into low-voltage Na TiSiO anode for lithium-ion battery publication-title: Rare Met doi: 10.1007/s12598-022-02051-9 – volume: 8 start-page: 1801064 issue: 24 year: 2018 ident: CR38 article-title: Fluorophosphates from solid-state synthesis and electrochemical ion exchange: NaVPO F or Na V (PO ) F ? publication-title: Adv Energy Mater doi: 10.1002/aenm.201801064 – volume: 6 start-page: 15 issue: 1 year: 1996 ident: CR46 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput Mater Sci doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 3938 issue: 20 year: 2020 ident: CR16 article-title: A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries publication-title: Inorg Chem Front doi: 10.1039/D0QI00872A – volume: 5 start-page: 10928 issue: 22 year: 2017 ident: CR32 article-title: Y-Doped Na V (PO ) F compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties publication-title: J Mater Chem A doi: 10.1039/C7TA03133E – volume: 463 start-page: 142464 year: 2023 ident: CR40 article-title: Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: combined theoretical and experimental study publication-title: Chem Eng J doi: 10.1016/j.cej.2023.142464 – volume: 3 start-page: 16198 issue: 31 year: 2015 ident: CR25 article-title: Improving the energy density of Na V (PO ) -based positive electrodes through V/Al substitution publication-title: J Mater Chem A doi: 10.1039/C5TA03528G – volume: 25 start-page: 724 year: 2020 ident: CR37 article-title: High performance cathode material based on Na V (PO ) F and Na V (PO ) for sodium-ion batteries publication-title: Energy Stor Mater doi: 10.1016/j.ensm.2019.09.014 – volume: 26 start-page: 4238 issue: 14 year: 2014 ident: CR48 article-title: Na V (PO ) F revisited: a high-resolution diffraction study publication-title: Chem Mater doi: 10.1021/cm501644g – volume: 47 start-page: 1756 issue: 12 year: 2023 ident: CR3 article-title: Performance of cathode material of high-power lithium-ion battery publication-title: Chin J Rare Metals doi: 10.13373/j.cnki.cjrm.XY21010027 – volume: 82 start-page: 105659 year: 2021 ident: CR39 article-title: Stabilizing fluorine to achieve high-voltage and ultra-stable Na V (PO ) F cathode for sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105659 – volume: 1 start-page: 196 issue: 2 year: 2022 ident: CR4 article-title: Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy publication-title: Interdiscip Mater doi: 10.1002/idm2.12008 – volume: 55 start-page: 11719 issue: 78 year: 2019 ident: CR29 article-title: Aluminum substitution for vanadium in the Na V (PO ) F and Na V (PO ) FO type materials publication-title: Chem Commun doi: 10.1039/C9CC05137F – volume: 74 start-page: 18 year: 2022 article-title: An asymmetric bilayer polymer‐ceramic solid electrolyte for high‐performance sodium metal batteries publication-title: J Energy Chem – volume: 29 start-page: 1701968 issue: 33 year: 2017 article-title: High‐energy/power and low‐temperature cathode for sodium‐ion batteries: in situ XRD study and superior full‐cell performance publication-title: Adv Mater – volume: 434 start-page: 128184 year: 2022 article-title: A combined first principles and experimental study on Al‐doped Na V (PO ) F cathode for rechargeable Na batteries publication-title: Surf Coat Technol – volume: 44 start-page: 6608 issue: 8 year: 2020 article-title: Ultra‐long cycle life and high rate performance subglobose Na V (PO ) F @C cathode and its regulation publication-title: Int J Energy Res – volume: 1 start-page: 196 issue: 2 year: 2022 article-title: Unraveling the reaction mechanisms of electrode materials for sodium‐ion and potassium‐ion batteries by in situ transmission electron microscopy publication-title: Interdiscip Mater – volume: 7 start-page: 1700514 issue: 18 year: 2017 article-title: Additional sodium insertion into polyanionic cathodes for higher‐energy Na‐ion batteries publication-title: Adv Energy Mater – volume: 7 start-page: 3938 issue: 20 year: 2020 article-title: A Prussian blue analogue as a long‐life cathode for liquid‐state and solid‐state sodium‐ion batteries publication-title: Inorg Chem Front – volume: 5 start-page: 10928 issue: 22 year: 2017 article-title: Y‐Doped Na V (PO ) F compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties publication-title: J Mater Chem A – volume: 27 start-page: 3009 issue: 8 year: 2015 article-title: Comprehensive investigation of the Na V (PO ) F –NaV (PO ) F system by operando high resolution synchrotron X‐ray diffraction publication-title: Chem Mater – volume: 331 start-page: 712 year: 2018 article-title: High capacity‐favorable tap density cathode material based on three‐dimensional carbonous framework supported Na V (PO ) F nanoparticles publication-title: Chem Eng J – volume: 55 start-page: 11719 issue: 78 year: 2019 article-title: Aluminum substitution for vanadium in the Na V (PO ) F and Na V (PO ) FO type materials publication-title: Chem Commun – volume: 59 start-page: 1758 issue: 3 year: 1999 article-title: From ultrasoft pseudopotentials to the projector augmented‐wave method publication-title: Phys Rev B – volume: 387 start-page: 123952 year: 2020 article-title: In‐situ constructing Na V (PO ) F /carbon nanocubes for fast ion diffusion with high‐performance Na ‐storage publication-title: Chem Eng J – volume: 30 start-page: 9 year: 2020 article-title: Recent advances and prospects of layered transition metal oxide cathodes for sodium‐ion batteries publication-title: Energy Storage Mater – volume: 10 start-page: 1051 issue: 5 year: 2017 article-title: High performance manganese‐based layered oxide cathodes: overcoming the challenges of sodium ion batteries publication-title: Energy Environ Sci – volume: 5 start-page: 1700768 issue: 4 year: 2018 article-title: Moving to aqueous binder: a valid approach to achieving high‐rate capability and long‐term durability for sodium‐ion battery publication-title: Adv Sci – volume: 47 start-page: 340 year: 2018 article-title: VSC‐doping and VSU‐doping of Na V Ti (PO ) F compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties publication-title: Nano Energy – volume: 6 start-page: 988 issue: 4 year: 2019 article-title: Precisely controlled preparation of an advanced Na V (PO ) O F cathode material for sodium ion batteries: the optimization of electrochemical properties and electrode kinetics publication-title: Inorg Chem Front – volume: 256 start-page: 258 year: 2014 article-title: Exploration of ion migration mechanism and diffusion capability for Na V (PO ) F cathode utilized in rechargeable sodium‐ion batteries publication-title: Banks J Power Sources – volume: 10 start-page: 10022 issue: 12 year: 2018 article-title: 3.0 V high energy density symmetric sodium‐ion battery: Na V (PO ) //Na V (PO ) publication-title: ACS Appl Mater Interfaces – volume: 856 start-page: 113694 year: 2020 article-title: Effect of chromium doping on Na V (PO ) F @C as promising positive electrode for sodium‐ion batteries publication-title: J Electroanal Chem – volume: 463 start-page: 142464 year: 2023 article-title: Fluorine substitution and pre‐sodiation strategies to boost energy density of V‐based NASICON‐structured SIBs: combined theoretical and experimental study publication-title: Chem Eng J – volume: 42 start-page: 3870 issue: 11 year: 2023 article-title: Hydrophobicity and tribological properties of Al O /PTFE composite coating publication-title: Rare Met – volume: 4 start-page: 1600275 issue: 3 year: 2017 article-title: Polyanion‐type electrode materials for sodium‐ion batteries publication-title: Adv Sci – volume: 6 start-page: 15 issue: 1 year: 1996 article-title: Efficiency of ab‐initio total energy calculations for metals and semiconductors using a plane‐wave basis set publication-title: Comput Mater Sci – volume: 1 start-page: 373 issue: 3 year: 2022 article-title: The prospect and challenges of sodium‐ion batteries for low‐temperature conditions publication-title: Interdiscip Mater – volume: 35 start-page: 1319 issue: 12 year: 2019 article-title: Electronic and optoelectronic nanodevices based on two‐dimensional semiconductor materials publication-title: Acta Phys Chim Sin – volume: 3 start-page: 3845 year: 2020 article-title: N‐doped carbon nanotubes decorated Na V (PO ) F as a durable ultrahigh‐rate cathode for sodium ion batteries publication-title: ACS Appl Energy Mater – volume: 3 start-page: 21478 issue: 43 year: 2015 article-title: Carbon‐coated Na V (PO ) F nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium‐ion batteries with superior rate capability and long‐term cycle life publication-title: J Mater Chem A – volume: 3 start-page: 16198 issue: 31 year: 2015 article-title: Improving the energy density of Na V (PO ) ‐based positive electrodes through V/Al substitution publication-title: J Mater Chem A – volume: 9 start-page: 1902056 issue: 38 year: 2019 article-title: Flexible Na/K‐Ion full batteries from the renewable cotton cloth‐derived stable, low‐cost, and binder‐free anode and cathode publication-title: Adv Energy Mater – volume: 82 start-page: 105659 year: 2021 article-title: Stabilizing fluorine to achieve high‐voltage and ultra‐stable Na V (PO ) F cathode for sodium ion batteries publication-title: Nano Energy – volume: 41 start-page: 3412 issue: 10 year: 2022 article-title: Theoretical research into low‐voltage Na TiSiO anode for lithium‐ion battery publication-title: Rare Met – volume: 4 start-page: 2932 issue: 10 year: 2020 article-title: Engineering the crystal orientation of Na V (PO ) F @rGO microcuboids for advanced sodium‐ion batteries publication-title: Mater Chem Front – volume: 59 start-page: 9299 issue: 24 year: 2020 article-title: Manipulating layered P2@P3 integrated spinel structure evolution for high‐performance sodium‐ion batteries publication-title: Angew Chem Int Ed – volume: 14 start-page: 12570 issue: 44 year: 2023 article-title: Controllable synthesis of a Na‐enriched Na V (PO ) cathode for high‐energy sodium‐ion batteries: a redox‐potential‐matched chemical sodiation approach publication-title: Chem Sci – volume: 383 start-page: 122130 year: 2023 article-title: Insights into the selective imprinted polymer of voriconazole from host‐guest interaction perspective publication-title: J Mol Liq – volume: 66 start-page: i12 issue: Pt2 year: 2010 article-title: NASICON‐type Na(3)V(2)(PO(4))(3) publication-title: Acta Crystallogr D – volume: 49 start-page: 33607 issue: 21 year: 2023 article-title: Comparative study of Na Ni Co Mn O P‐type cathode materials for sodium‐ion batteries: combustion synthesis and combined analysis of structural, electrical, and dielectric properties publication-title: Ceram Int – volume: 37 start-page: 325 year: 2021 article-title: Unraveling the mechanism of optimal concentration for Fe substitution in Na V (PO4) F /C for Sodium‐Ion batteries publication-title: Energy Stor Mater – volume: 2 start-page: 8668 issue: 23 year: 2014 article-title: Na V (PO ) @C core–shell nanocomposites for rechargeable sodium‐ion batteries publication-title: J Mater Chem A – volume: 26 start-page: 4238 issue: 14 year: 2014 article-title: Na V (PO ) F revisited: a high‐resolution diffraction study publication-title: Chem Mater – volume: 8 start-page: 1801064 issue: 24 year: 2018 article-title: Fluorophosphates from solid‐state synthesis and electrochemical ion exchange: NaVPO F or Na V (PO ) F ? publication-title: Adv Energy Mater – volume: 148 start-page: 260 issue: 2 year: 1999 article-title: Phase transitions in the Na M (PO ) F Family (M=Al , V , Cr , Fe , Ga ): synthesis, thermal, structural, and magnetic studies publication-title: J Solid State Chem – volume: 25 start-page: 724 year: 2020 article-title: High performance cathode material based on Na V (PO ) F and Na V (PO ) for sodium‐ion batteries publication-title: Energy Stor Mater – volume: 47 start-page: 1756 issue: 12 year: 2023 article-title: Performance of cathode material of high‐power lithium‐ion battery publication-title: Chin J Rare Metals – volume: 790 start-page: 203 year: 2019 end-page: 211 article-title: Improved electrochemical performance of high voltage cathode Na V (PO ) F for Na‐ion batteries through potassium doping publication-title: J Alloys Compd – volume: 41 start-page: 115 issue: 1 year: 2022 article-title: Ultra‐stable carbon‐coated sodium vanadium phosphate as cathode material for sodium‐ion battery publication-title: Rare Met |
| SSID | ssj0044660 |
| Score | 2.4499993 |
| Snippet | With its unique 3D skeleton structure and exceptional cyclic stability, the Na
+
superionic conductor (NASICON)-type Na
3
V
2
(PO
4
)
2
F
3
(NVPF) has been... With its unique 3D skeleton structure and exceptional cyclic stability, the Na+ superionic conductor (NASICON)‐type Na3V2(PO4)2F3 (NVPF) has been considered as... |
| SourceID | wiley springer |
| SourceType | Publisher |
| StartPage | 4253 |
| SubjectTerms | Biomaterials Cathode Chemistry and Materials Science Doping Electrochemistry Energy Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology NASICON Original Article Physical Chemistry Sodium‐ion energy storage batteries |
| Title | Manipulation of Na3V2(PO4)2F3 via aluminum doping to alter local electron states toward an advanced cathode for sodium-ion batteries |
| URI | https://link.springer.com/article/10.1007/s12598-024-02777-8 https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-024-02777-8 |
| Volume | 43 |
| WOSCitedRecordID | wos001236100000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1867-7185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044660 issn: 1001-0521 databaseCode: RSV dateStart: 20090201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8R4yQcOIBGpTdOlPQ7ExIUxDZh2q5ImlXpYi9Ztv4AfjpO1YkgICc6tkshx_Nmy_ZmQK6ZDhSgRU42-LOX43GhkJKO-sOGIUCaTmRs2Ifr9aDyOB3VTWNVUuzcpSWepv5rd0FOPKGKKyzuibV0nGwh3kX2Ow5dRY39tgnLJQWADZUSnulXm5zVWEqDf3VOHL73d_51sj-zU_iR0lwqwT9ZMcUC2V1gGD8nHkyzyZkwXlBn0ZTBi14NnfsN6ASxyCRJNVF7MJ6Bd_xTMSnBpdHBQB82sHHDtRxV-trW2IAtoSgjA0r-W2gD6wFCVOp9PqN1NOfpOjMaPyFvv4fX-kdbDF2hlWcwoy0IvY9wYRC8lDI873EsjpWI_TJWvjPJMnPra62QW84XxA6ktV3OIARDzeBock1ZRFuaEgFUDLrSnAoEOgWciiTqBi9kb4or5bXLbyDWpX1CVfNEpW-EmKNzECTeJ2oS7e0rel3wcv_yaDLtDdtdDvy4Sp3_b5YxsMXejtpzsnLRm07m5IJvpYpZX00uncZ-I2c3b |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3F-3oMPCgbaNFvbxymOidscc469laRNoQ9rZd32F_iHe8laNkEEfW5JwuVyvzvu7neE3LCoJhElfBqhL0s5PjfqKcGo7epwxJUqFrEZNuF2u95o5PeKprC8rHYvU5LGUi-b3dBT9yhiisk7om1dJxscEUsX8vXfhqX91QnKBQeBDpQRnYpWmZ_XWEmAfndPDb409_53sn2yW_iT0FgowAFZU-kh2VlhGTwinx2RJuWYLshi6ApnyG57r_yONR2YJwIEmqgknY0hMv1TMM3ApNHBQB2Us3LAtB_l-FnX2oJIoSwhAE3_mkUK0AeGPIuS2Zjq3aSh78Ro_Ji8N58Gjy1aDF-guWYxoyyuWTHjSiF6SVdxv86t0JPSt2uhtKWSlvJDO7LqscZ8V9mOiDRXcw0DIGbx0DkhlTRL1SkBrQbcjSzpuOgQWMoTqBO4mL4hLpldJfelXIPiBeXBkk5ZCzdA4QZGuIFXJdzcU_Cx4OP45deg3-izhyb6dZ579rddrslWa9BpB-3n7ss52WbmdnVp2QWpTCczdUk2w_k0ySdXRvu-ADik0L8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66iujBt7g-5-BBwbBtmt22R19FUdfFF95K0qTQg61su_4Cf7iTbIsriCCeW5Iwmcx8w8x8Q8gBU12JXiKkCrEs5fjcaKAFo65vwhFf6lSkdtiE3-8HLy_hYKKL31a7NynJcU-DYWnKq86bSjtfjW-I2gOK_sXmINHOTpMZboYGmXj94bmxxSZZOeYjMEEzeqq6bebnNSaSod-hqvU10dL_T7lMFmucCSdjxVghUzpfJQsT7INr5ONW5FkzvguKFPrCe2aHgzt-xCIP3jMBAk1Xlo9eQdm-KqgKsOl1sC4Qmhk6YNuSSvxsanBB5NCUFoChhS2UBsTGUBYqG71Ss5u0tJ4Ypa-Tp-ji8eyS1kMZaGnYzShLu07KuNbo1aSvedjjThJIGbrdRLpSS0eHiaucXmqwgK9dTyjD4dzFwIg5PPE2SCsvcr1JwKgH95UjPR-BgqMDgbqCi5nb4pK5bXLcyDiuX1YZf9EsG-HGKNzYCjcO2oTbO4vfxjwdv_wa35_cs9MI8V7gb_1tl30yNziP4pur_vU2mWf2ck3F2Q5pVcOR3iWzyXuVlcM9q4ifNsnZow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+Na3V2%28PO4%292F3+via+aluminum+doping+to+alter+local+electron+states+toward+an+advanced+cathode+for+sodium%E2%80%90ion+batteries&rft.jtitle=Rare+metals&rft.au=Wang%2C+Shi%E2%80%90Min&rft.au=Li%2C+Jin%E2%80%90Qi&rft.au=Xu%2C+Li&rft.au=Sun%2C+Meng%E2%80%90Jiao&rft.date=2024-09-01&rft.pub=Nonferrous+Metals+Society+of+China&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=43&rft.issue=9&rft.spage=4253&rft.epage=4262&rft_id=info:doi/10.1007%2Fs12598-024-02777-8&rft.externalDBID=10.1007%252Fs12598-024-02777-8&rft.externalDocID=RAR2BF02587 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |