Sparse signal recovery via minimax‐concave penalty and ℓ1 ‐norm loss function

In sparse signal recovery, to overcome the ℓ1 ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ℓ0...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET signal processing Ročník 12; číslo 9; s. 1091 - 1098
Hlavní autoři: Sun, Yuli, Chen, Hao, Tao, Jinxu
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.12.2018
Témata:
ISSN:1751-9683, 1751-9683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In sparse signal recovery, to overcome the ℓ1 ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ℓ0 ‐norm more accurately. Moreover, the authors employ the ℓ1 ‐norm loss function instead of the ℓ2 ‐norm for the residual error, as the ℓ1 ‐loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non‐convex non‐smooth problem, they first employ a smoothed strategy to approximate the ℓ1 ‐norm loss function, and then use the difference‐of‐convex algorithm framework to solve the non‐convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.
AbstractList In sparse signal recovery, to overcome the ℓ1 ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high‐amplitude components, a new algorithm based on a non‐convex minimax‐concave penalty is proposed, which can approximate the ℓ0 ‐norm more accurately. Moreover, the authors employ the ℓ1 ‐norm loss function instead of the ℓ2 ‐norm for the residual error, as the ℓ1 ‐loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non‐convex non‐smooth problem, they first employ a smoothed strategy to approximate the ℓ1 ‐norm loss function, and then use the difference‐of‐convex algorithm framework to solve the non‐convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.
Author Sun, Yuli
Chen, Hao
Tao, Jinxu
Author_xml – sequence: 1
  givenname: Yuli
  surname: Sun
  fullname: Sun, Yuli
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Jinxu
  surname: Tao
  fullname: Tao, Jinxu
  email: tjingx@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNpN0EtOwzAQBmALFYm2cAB2vkCK7fiRsIOKQqVKLApryzgTZJQ4kR0K2bHgAEjcsCfBFSxYzWhmNPr1zdDEdx4QOqdkQQkvLxwMWezDghFaLATNyRGaUiVoVsoin_zrT9AsxhdChBSUTdF225sQAUf37E2DA9huB2HEO2dw67xrzfv-48t23pod4B7S0TBi4yu8__ymOO18F1rcdDHi-tXbwXX-FB3Xpolw9lfn6HF187C8yzb3t-vl1SaLlNGUxhhmJTGFLaRUCkA8WQaM11YJVtZSQsmlEpxTZSuouFWMy7o0la3SjJF8ji5__765Bkbdh5Q2jJoSfSDRiUQnEn0g0QcSvV1v2PWKEFnQ_Ad-M16E
ContentType Journal Article
Copyright 2021 The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Institution of Engineering and Technology
DOI 10.1049/iet-spr.2018.5130
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 1098
ExternalDocumentID SIL2BF00681
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81527802
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
~ZZ
ID FETCH-LOGICAL-s1211-9aa2c60a8c86677ee5bc2e24fc7529f66e946754417cded4c7246f9adcd441203
IEDL.DBID 24P
ISSN 1751-9683
IngestDate Wed Jan 22 16:31:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s1211-9aa2c60a8c86677ee5bc2e24fc7529f66e946754417cded4c7246f9adcd441203
PageCount 8
ParticipantIDs wiley_primary_10_1049_iet_spr_2018_5130_SIL2BF00681
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References 2010; 11
2015; 37
2006; 52
2017; 3
2012
2013; 22
2005; 133
2015; 244
2017; 65
2008; 14
2011; 33
2014; 24
2013; 140
2014; 61
2015; 8
2014; 23
2012; 52
2018; 69
2007; 16
2013; 19
2017; 74
2013; 51
2015; 64
2017
2016
1981
2013
2012; 6
2009; 2
2012; 23
2010; 4
2016; 26
2012; 21
References_xml – volume: 16
  start-page: 1101
  issue: 4
  year: 2007
  end-page: 1111
  article-title: Deblurring of color images corrupted by impulsive noise
  publication-title: IEEE Trans. Image Process.
– volume: 244
  start-page: 26
  issue: 1
  year: 2015
  end-page: 46
  article-title: DC approximation approaches for sparse optimization
  publication-title: Eur. J. Oper. Res.
– year: 1981
– volume: 37
  start-page: 536
  issue: 1
  year: 2015
  end-page: 563
  article-title: Minimization of L1‐2 for compressed sensing
  publication-title: SIAM J. Sci. Comput.
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  end-page: 1027
  article-title: L1/2 regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  end-page: 343
  article-title: The split Bregman method for L1‐regularized problems
  publication-title: SIAM J. Imaging Sci.
– volume: 65
  start-page: 2561
  issue: 10
  year: 2017
  end-page: 2575
  article-title: Sparse signal approximation via non‐separable regularization
  publication-title: IEEE Trans. Signal Process.
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 23
  start-page: 078703
  issue: 7
  year: 2014
  article-title: Image reconstruction from few views by ℓ0‐norm optimization
  publication-title: Chin. Phys. B
– volume: 19
  start-page: 2277
  issue: 5B
  year: 2013
  end-page: 2293
  article-title: Multi‐stage convex relaxation for feature selection
  publication-title: Bernoulli. (Andover)
– volume: 51
  start-page: 927
  issue: 2
  year: 2013
  end-page: 957
  article-title: Improved iteratively reweighted least squares for unconstrained smoothed Lq minimization
  publication-title: SIAM J. Numer. Anal.
– volume: 61
  start-page: 198
  issue: 3
  year: 2014
  end-page: 202
  article-title: New improved algorithms for compressive sensing based on LP norm
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 69
  start-page: 297
  issue: 2
  year: 2018
  end-page: 324
– start-page: 37
  year: 2013
  end-page: 45
  article-title: A general iterative shrinkage and thresholding algorithm for non‐convex regularized optimization problems
– volume: 11
  start-page: 1081
  year: 2010
  end-page: 1107
  article-title: Analysis of multi‐stage convex relaxation for sparse regularization
  publication-title: J. Mach. Learn. Res.
– volume: 65
  start-page: 105
  issue: 1
  year: 2017
  end-page: 118
  article-title: Robust sparse recovery in impulsive noise via LP‐L1 optimization
  publication-title: IEEE Trans. Signal Process.
– start-page: 4643
  year: 2016
  end-page: 4647
  article-title: Robust sparse recovery for compressive sensing in impulsive noise using ℓp‐norm model fitting
– volume: 52
  start-page: 509
  issue: 3
  year: 2012
  end-page: 535
  article-title: Exact penalty and error bounds in DC programming
  publication-title: J. Glob. Optim.
– volume: 65
  start-page: 4481
  issue: 17
  year: 2017
  end-page: 4494
  article-title: Sparse regularization via convex analysis
  publication-title: IEEE Trans. Signal Process.
– start-page: 1027
  year: 2013
  end-page: 1033
  article-title: A concave conjugate approach for nonconvex penalized regression with the MCP penalty
– start-page: 427
  year: 2013
  end-page: 435
  article-title: Revisiting Frank‐Wolfe: projection‐free sparse convex optimization
– volume: 26
  start-page: 43
  issue: 1
  year: 2016
  end-page: 54
  article-title: MR imaging reconstruction using a modified descent‐type alternating direction method
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 4
  start-page: 244
  issue: 2
  year: 2010
  end-page: 254
  article-title: Compressed synthetic aperture radar
  publication-title: IEEE. J. Sel. Top. Signal Process.
– volume: 21
  start-page: 397
  issue: 1
  year: 2012
  end-page: 405
  article-title: Improved image recovery from compressed data contaminated with impulsive noise
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 14
  start-page: 877
  issue: 5–6
  year: 2008
  end-page: 905
  article-title: Enhancing sparsity by reweighted L1 minimization
  publication-title: J. Fourier Anal. Appl.
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  end-page: 161
  article-title: Gradient methods for minimizing composite functions
  publication-title: Math. Program.
– volume: 3
  start-page: 566
  issue: 4
  year: 2017
  end-page: 579
  article-title: Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization
  publication-title: IEEE Trans. Comput. Imaging
– volume: 24
  start-page: 215
  issue: 3
  year: 2014
  end-page: 223
  article-title: Few views image reconstruction using alternating direction method via 0norm minimization
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 6
  start-page: 976
  issue: 7
  year: 2012
  end-page: 985
  article-title: Improved decision‐based detail‐preserving variational method for removal of random‐valued impulse noise
  publication-title: IET Image Process.
– volume: 133
  start-page: 23
  issue: 1‐4
  year: 2005
  end-page: 46
  article-title: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
  publication-title: Ann. Oper. Res.
– start-page: 895
  year: 2012
  end-page: 903
  article-title: Robust multi‐task feature learning
– year: 2017
– volume: 22
  start-page: 4724
  issue: 12
  year: 2013
  end-page: 4737
  article-title: Efficient algorithms for robust recovery of images from compressed data
  publication-title: IEEE Trans. Image Process.
– volume: 74
  start-page: 1
  issue: 2
  year: 2017
  end-page: 19
  article-title: Fast L1–L2 minimization via a proximal operator
  publication-title: J. Sci. Comput.
– volume: 8
  start-page: 1798
  issue: 3
  year: 2015
  end-page: 1823
  article-title: A weighted difference of anisotropic and isotropic total variation model for image processing
  publication-title: SIAM J. Imaging Sci.
– volume: 64
  start-page: 178
  issue: 1
  year: 2015
  end-page: 196
  article-title: Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2
  publication-title: J. Sci. Comput.
– volume: 33
  start-page: 250
  issue: 1
  year: 2011
  end-page: 278
  article-title: Alternating direction algorithms for L1‐problemsincompressivesensing
  publication-title: SIAM J. Sci. Comput.
SSID ssj0056512
Score 2.1938162
Snippet In sparse signal recovery, to overcome the ℓ1 ‐norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate...
SourceID wiley
SourceType Publisher
StartPage 1091
SubjectTerms approximation theory
cluster point
concave programming
difference‐of‐convex algorithm framework
high‐amplitude components
minimax techniques
nonconvex minimax‐concave penalty
nonconvex nonsmooth problem
nonconvex problem
reconstruction quality
signal amplitude
signal reconstruction
sparse signal recovery
ℓ1 ‐norm loss function
ℓ1 ‐norm sparse regularisation
Title Sparse signal recovery via minimax‐concave penalty and ℓ1 ‐norm loss function
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2018.5130
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKYYCBN-ItD6yBxE7seISKikqoqlQQ3SLXdqRKEKI2VHRj4Acg8Q_7S7hL2grEhlgyOE4Unc_3yPm-j5AzsLu-iK32NMOWHKFTT3OuPMEdi9KAOd-vyCZkux33eqpTI415L0yFD7H44YY7o7TXuMF1v2IhgaAWFnHgCm-UI6RnEJ9HYIqXyHIQ8Bj5G1jYmZtjCFiqkqdEPnkR80VpU138esXPCLV0Mc2Nf_m4TbI-izDpZaUSW6Tmsm2y9g13cId0uznks47i4Q2YikkxaPSEjgeaItbIk36dvn1Apmz02NHcwaRiQnVm6fT9M6BwL4NQlz6Cg6XoGHFxd8l98_qucePN2BW8EcK6eUprZoSvYxMLIaVzUd8wx8LUyIipVAinwIiWFGXGOhsayUKRKm2NhTHm8z1Sz54zt08olzzoKwOZl4b8LGWQ03GrdSisVIgfdkB4KawkrxA0krLyHaoExJSAmBIUU4JiSrqtW3bVxMaV4PBPTx2RVRyvTpwck3oxfHEnZMWMi8FoeFqqBlwfWu0v7EPAmA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5qFdSDb_HtHrxGk91kkz36Ki3WILRib2G72UBBY2hjsTcP_gDBf9hf4kzSFsWbeE0mIUxmZ-bb2fmGkBPwu7YIYmUphi05QiWW4lxaghvmJQ4ztl0Om_DDMOh05F2FXE17YUp-iNmGG66Mwl_jAscN6RJwukiS2TO5NciQ09MJTj3wxXNk3oWEAwc4PDTCqT-GjKWsefo4UF4EfFbblGe_XvEzRS1iTG31f75ujaxMckx6XhrFOqmYdIMsf2Me3CStVgaI1lA8vgGiCIvBpkd02FMU2Uae1Ov47QOwslZDQzMDQvmIqjSm4_dPh8K9FJJd-gghlmJoxN-7Re5r1-3LujWZr2ANkNjNkkoxLWwV6EAI3zfG62pmmJto32MyEcJIcKPFkDIdm9jVPnNFIlWsY7jGbL5NqulzanYI5T53ulID9lKA0BIGqI7HSrki9iUyiO0SXmgrykoOjaiofbsyAjVFoKYI1RShmqJWo8kuati64uz96aljslhv3zajZiO82SdLKFOePzkg1bz_Yg7Jgh7mvUH_qLCTL1rdw-E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-ED34Ft_m4LXaJmnSHNV1UVyWhVXwVmKSwoLWslsXvXnwBwj-w_0lzrSrKN7EazstZTKZma-T-YaQA_C7oUycCQzDlhxpssBwrgPJPYuziPkwrIdNqHY7ubnRnQnS-OyFqfkhvn644c6o_DVucF-4rAacAkkye74MBgVyekbJYQy-eJJMi1hFaNtMdD79MWQsdc1T4UB5mfCv2qY--vWKnylqFWOai__zdUtkYZxj0uPaKJbJhM9XyPw35sFV0u0WgGg9xeMbIIqwGGz6mQ57hiLbyL15Gr28AVa2Zuhp4UGofKYmd3T0-h5RuJdDskvvIMRSDI24vGvkunl2dXoejOcrBAMkdgu0MczK0CQ2kVIp7-NbyzwTmVUx05mUXoMbrYaUWeedsIoJmWnjrINrLOTrZCp_yP0GoVzx6FZbwF4GEFrGANVxZ4yQTmlkENskvNJWWtQcGmlV-xY6BTWloKYU1ZSimtLuRYudNLF1Jdr601P7ZLbTaKati_blNplDkfr4yQ6ZKvuPfpfM2GHZG_T3KjP5AN9Xwvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+signal+recovery+via+minimax%E2%80%90concave+penalty+and+%E2%84%931+%E2%80%90norm+loss+function&rft.jtitle=IET+signal+processing&rft.au=Sun%2C+Yuli&rft.au=Chen%2C+Hao&rft.au=Tao%2C+Jinxu&rft.date=2018-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9683&rft.eissn=1751-9683&rft.volume=12&rft.issue=9&rft.spage=1091&rft.epage=1098&rft_id=info:doi/10.1049%2Fiet-spr.2018.5130&rft.externalDBID=10.1049%252Fiet-spr.2018.5130&rft.externalDocID=SIL2BF00681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9683&client=summon