基于协同训练SVR的脆性材料亚表面微裂纹深度预测

TG58%TG732; 为克服固结磨料研磨脆性材料的亚表面微裂纹深度有效样本数不足的困境,实现其准确预测,采用协同训练SVR构建预测模型,对比不同标记训练集划分方法对测试集均方误差的影响;后以监督学习PSO-SVR模型为对照,比较二者的预测性能;最后以标记训练集未包含的脆性材料微晶玻璃和氟化钙为加工对象,进行工件的研磨及角度抛光法裂纹深度检测实验,并将检测的4组亚表面微裂纹深度值与协同训练SVR模型的预测值对比.结果表明:分开划分法下的协同训练SVR模型具有更小的均方误差;相比于PSO-SVR模型,协同训练SVR模型的均方误差和平均绝对百分比误差分别减小9%和17%,且其对4组验证实验的预测误...

Full description

Saved in:
Bibliographic Details
Published in:金刚石与磨料磨具工程 Vol. 43; no. 6; pp. 704 - 711
Main Authors: 任闯, 盛鑫, 牛凤丽, 朱永伟
Format: Journal Article
Language:Chinese
Published: 南京航空航天大学机电学院,南京 210016 01.12.2023
Subjects:
ISSN:1006-852X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract TG58%TG732; 为克服固结磨料研磨脆性材料的亚表面微裂纹深度有效样本数不足的困境,实现其准确预测,采用协同训练SVR构建预测模型,对比不同标记训练集划分方法对测试集均方误差的影响;后以监督学习PSO-SVR模型为对照,比较二者的预测性能;最后以标记训练集未包含的脆性材料微晶玻璃和氟化钙为加工对象,进行工件的研磨及角度抛光法裂纹深度检测实验,并将检测的4组亚表面微裂纹深度值与协同训练SVR模型的预测值对比.结果表明:分开划分法下的协同训练SVR模型具有更小的均方误差;相比于PSO-SVR模型,协同训练SVR模型的均方误差和平均绝对百分比误差分别减小9%和17%,且其对4组验证实验的预测误差在1.2%~13.8%.表明协同训练SVR模型,可较为准确地预测固结磨料研磨脆性材料的亚表面微裂纹深度.
AbstractList TG58%TG732; 为克服固结磨料研磨脆性材料的亚表面微裂纹深度有效样本数不足的困境,实现其准确预测,采用协同训练SVR构建预测模型,对比不同标记训练集划分方法对测试集均方误差的影响;后以监督学习PSO-SVR模型为对照,比较二者的预测性能;最后以标记训练集未包含的脆性材料微晶玻璃和氟化钙为加工对象,进行工件的研磨及角度抛光法裂纹深度检测实验,并将检测的4组亚表面微裂纹深度值与协同训练SVR模型的预测值对比.结果表明:分开划分法下的协同训练SVR模型具有更小的均方误差;相比于PSO-SVR模型,协同训练SVR模型的均方误差和平均绝对百分比误差分别减小9%和17%,且其对4组验证实验的预测误差在1.2%~13.8%.表明协同训练SVR模型,可较为准确地预测固结磨料研磨脆性材料的亚表面微裂纹深度.
Abstract_FL In order to overcome the dilemma of insufficient effective sample number for subsurface microcrack depth in the lapping of brittle materials with fixed abrasives and achieve accurate prediction,a co-training SVR was used to construct the prediction model.The effects of different labeled training set partitioning methods on the mean square er-ror of the test set were compared.Then the predictive performance of supervised learning PSO-SVR model was com-pared with that of the model.Finally,brittle materials such as microcrystalline glass and calcium fluoride,which were not included in the labeled training set,were taken as processing objects for lapping and angular polishing experiments to examine crack depth values.The examined subsurface microcrack depths of four groups were compared with the pre-dicted values of the co-training SVR model.The results show that the co-training SVR model under the separate parti-tioning method has a smaller mean square error.Compared with the PSO-SVR model,the mean square error and the mean absolute percentage error of the co-training SVR model are reduced by 9%and 17%,respectively.The prediction error of the model for the four groups of verification experiments is between 1.2%and 13.8%.The above results show that the co-training SVR model can predict the subsurface microcrack depth accurately when lapping brittle materials with fixed abrasives.
Author 朱永伟
牛凤丽
任闯
盛鑫
AuthorAffiliation 南京航空航天大学机电学院,南京 210016
AuthorAffiliation_xml – name: 南京航空航天大学机电学院,南京 210016
Author_FL SHENG Xin
ZHU Yongwei
NIU Fengli
REN Chuang
Author_FL_xml – sequence: 1
  fullname: REN Chuang
– sequence: 2
  fullname: SHENG Xin
– sequence: 3
  fullname: NIU Fengli
– sequence: 4
  fullname: ZHU Yongwei
Author_xml – sequence: 1
  fullname: 任闯
– sequence: 2
  fullname: 盛鑫
– sequence: 3
  fullname: 牛凤丽
– sequence: 4
  fullname: 朱永伟
BookMark eNotj8tKw0AYRmdRwVr7DD6AJP4zk0ymSy3eoCB4w12ZJDOhsU3BIGJXosWNt64EC0WsoG4suBAxgk_TXPoWRnTznd13ODOoELQDidAcBh1TWjEWfN0J9hu674Wdjk6AUB0AWAEVcQ6Nm2RvGpXDsGGDianFMLGKaCm-j8bRdXx1E_cus9Fr-nW2tbuZ9rtZ9zw5eU4GveT2bhz1s4eXyWAYf4-yx9M0-kw-3uLoaTLsJu8Xs2hKiWYoy_8soZ2V5e3qmlbbWF2vLta0EAOzNJMxrogDUnBbcSxNQxJMCTbdimXmIysuEBsrBjanDuOCC9t1DaKIsKmSgpbQ_N_vkQiUCLy63z48CHJjPS8-bjVbvuf8VgMDsOgPvUFpJw
ClassificationCodes TG58%TG732
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13394/j.cnki.jgszz.2023.0006
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Prediction of subsurface microcrack depth of brittle materials based on co-training SVR
EndPage 711
ExternalDocumentID jgsymlmjgc202306007
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (U20A20293)
GroupedDBID -03
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1067-5668f2c0ea8bf81e54e213215d9755d9e9d02b1f60b83c68a8abdd42f2ab3fea3
ISSN 1006-852X
IngestDate Thu May 29 03:59:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 亚表面损伤
支持向量回归
小样本
脆性材料
粒子群优化支持向量回归
协同训练
co-training
brittle material
support vector regression(SVR)
small sample
subsurface damage
particle swarm optimization support vector regression(PSO-SVR)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1067-5668f2c0ea8bf81e54e213215d9755d9e9d02b1f60b83c68a8abdd42f2ab3fea3
PageCount 8
ParticipantIDs wanfang_journals_jgsymlmjgc202306007
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 金刚石与磨料磨具工程
PublicationTitle_FL Diamond & Abrasives Engineering
PublicationYear 2023
Publisher 南京航空航天大学机电学院,南京 210016
Publisher_xml – name: 南京航空航天大学机电学院,南京 210016
SSID ssib051376127
ssib002263492
ssj0039779
ssib023167358
ssib008143579
ssib001129951
Score 2.3785038
Snippet TG58%TG732; 为克服固结磨料研磨脆性材料的亚表面微裂纹深度有效样本数不足的困境,实现其准确预测,采用协同训练SVR构建预测模型,对比不同标记训练集划分方法对测试集均方...
SourceID wanfang
SourceType Aggregation Database
StartPage 704
Title 基于协同训练SVR的脆性材料亚表面微裂纹深度预测
URI https://d.wanfangdata.com.cn/periodical/jgsymlmjgc202306007
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1006-852X
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0039779
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LahRBcIjRgx7EJ77JIX2SjTM9r-pjz-4snoJolNzCPGNiMko2hpiTaPDiKyfBQBAjqBcDHkRcwQ_wO7KP_IVVvbOzQ5JDPASGpreruuu13V3d01OtaaMBD82Qp7jICR1RsaxIr0CUGpXE5Q4PeKRjoi6bcMfHYXJS3Bo68rf_LczSnJtlsLwsHh2qqbEMjU2fzv6HuYtGsQDzaHRM0eyYHsjwzLeZqDNPMt-iFHwqgRqDugLpDKrMByZ9JmvMd5nnMTDv3LtNeYH4FkExBYf5Dp2EkC5lRI3qUgYfkTeO-NSUwSQwXxCO5ETF86l9ApkMuKIimSeouod5Q-FIJh2qhVWIKIKQT6_sLhMUkCuFD6DIuUo6UzEASjqXqBADBW9FCdayiaKvUmkrEPSp4B9NNePRQ-wjsD6AICWPHoKghF4ZAkJBbGJPWjkzXm2AgoxUlaAolk5AQqki7-V9Fm7uOrOSmwoZ6elXKlOh5FJJLoWya1FiE20szDNKTjSqdPr0e_qySLMDkCAdodJ5dS-565zCZTmluYo2g8BWt9EXk1kv5lXeacszk9u75Tl3ctzeDLdn_jRNZIkm0Ch7MDM2O91YWRkjZVCYz10Ry5UPhBhP5ufmZ6cjrhazKrDDUe7aAkrbG8o1R8dSlN5Ao9tPgTGL30CO--CNMacIDebgjb1t4Exo8GIzhdYtQp1kyJWQn90kAW7sz776LC9Lg2y65EFOnNJO5ku_Ednrsqe1oZX7Z7QTpYCgZzWv9aG53XzTev22tfaqu_Wt8_s5dszO-mp39UX76Zf2xlr73fvt5nr349edjc3Wn63up2ed5q_2z--t5uedzdX2j5fntLt1f6J6s5LfclJpUPjGCq6nIMVBMQkgTMFIbCvhhomeeCxcG5NExDoPjdTRQzAjBwIIwji2cHwNQjNNAvO8Npw9zJIL2kgUmYbFYyN1E7DS2MBR17GEYUPkBHGQ6Be10VwDU_mA1Zjax4KXDoZ2WTs-6CdXtOHFhcfJVe1YtLQ401i4pqz_D5CJtnA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%8F%E5%90%8C%E8%AE%AD%E7%BB%83SVR%E7%9A%84%E8%84%86%E6%80%A7%E6%9D%90%E6%96%99%E4%BA%9A%E8%A1%A8%E9%9D%A2%E5%BE%AE%E8%A3%82%E7%BA%B9%E6%B7%B1%E5%BA%A6%E9%A2%84%E6%B5%8B&rft.jtitle=%E9%87%91%E5%88%9A%E7%9F%B3%E4%B8%8E%E7%A3%A8%E6%96%99%E7%A3%A8%E5%85%B7%E5%B7%A5%E7%A8%8B&rft.au=%E4%BB%BB%E9%97%AF&rft.au=%E7%9B%9B%E9%91%AB&rft.au=%E7%89%9B%E5%87%A4%E4%B8%BD&rft.au=%E6%9C%B1%E6%B0%B8%E4%BC%9F&rft.date=2023-12-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210016&rft.issn=1006-852X&rft.volume=43&rft.issue=6&rft.spage=704&rft.epage=711&rft_id=info:doi/10.13394%2Fj.cnki.jgszz.2023.0006&rft.externalDocID=jgsymlmjgc202306007
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjgsymlmjgc%2Fjgsymlmjgc.jpg