自编码网络在JavaScript恶意代码检测中的应用研究

TP391; 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法.首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏性限制,同时加入一定概率分布的噪声进行染噪的学习训练,使得自动编码器模型能够获取数据不同层次的特征表达;再经过无监督逐层贪婪的预训练和有监督的微调过程可以得到有效去噪后的更深层次特征;最后利用Soft max函数对特征进行分类.实验结果表明,稀疏降噪自编码分类算法对JavaScript具有较好的分类能力,其准确率高于传统机器学习模...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机科学与探索 Jg. 13; H. 12; S. 2073 - 2084
Hauptverfasser: 龙廷艳, 万良, 丁红卫
Format: Journal Article
Sprache:Chinesisch
Veröffentlicht: 贵州大学 计算机软件与理论研究所,贵阳 550025 01.12.2019
贵州大学 计算机科学与技术学院,贵阳 550025
Schlagworte:
ISSN:1673-9418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract TP391; 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法.首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏性限制,同时加入一定概率分布的噪声进行染噪的学习训练,使得自动编码器模型能够获取数据不同层次的特征表达;再经过无监督逐层贪婪的预训练和有监督的微调过程可以得到有效去噪后的更深层次特征;最后利用Soft max函数对特征进行分类.实验结果表明,稀疏降噪自编码分类算法对JavaScript具有较好的分类能力,其准确率高于传统机器学习模型,相比随机森林的方法提高了0.717%,相比支持向量机(SVM)的方法提高了2.237%.
AbstractList TP391; 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法.首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏性限制,同时加入一定概率分布的噪声进行染噪的学习训练,使得自动编码器模型能够获取数据不同层次的特征表达;再经过无监督逐层贪婪的预训练和有监督的微调过程可以得到有效去噪后的更深层次特征;最后利用Soft max函数对特征进行分类.实验结果表明,稀疏降噪自编码分类算法对JavaScript具有较好的分类能力,其准确率高于传统机器学习模型,相比随机森林的方法提高了0.717%,相比支持向量机(SVM)的方法提高了2.237%.
Abstract_FL For the problem that it is difficult for traditional machine learning feature extraction methods to explore the deep essential features of JavaScript malicious code, a JavaScript malicious code detection method based on stacked sparse denoising autoencoder network (sSDAN) is proposed. Firstly, JavaScript malicious code is quantized. Through adding sparsity limitation to autoencoder network, and noise with a certain probability distribution is added for learning and training of noise dyeing, the automatic encoder model can obtain the feature expressions of different levels of data. Then, by unsupervised layer by layer greedy pre-training and supervised fine-tuning process, the deeper features of effective denoising are obtained. Finally, Softmax function is used to classify the features. Experimental results show that the sparse noise reduction autoencoder classification algorithm has a good classification ability for JavaScript, and its accuracy is higher than that of traditional machine learning models, e.g. it is 0.717% higher than that of the random forest method, and 2.237% higher than that of the SVM (support vector machine) method.
Author 万良
龙廷艳
丁红卫
AuthorAffiliation 贵州大学 计算机科学与技术学院,贵阳 550025;贵州大学 计算机软件与理论研究所,贵阳 550025
AuthorAffiliation_xml – name: 贵州大学 计算机科学与技术学院,贵阳 550025;贵州大学 计算机软件与理论研究所,贵阳 550025
Author_FL DING Hongwei
LONG Tingyan
WAN Liang
Author_FL_xml – sequence: 1
  fullname: LONG Tingyan
– sequence: 2
  fullname: WAN Liang
– sequence: 3
  fullname: DING Hongwei
Author_xml – sequence: 1
  fullname: 龙廷艳
– sequence: 2
  fullname: 万良
– sequence: 3
  fullname: 丁红卫
BookMark eNo9jT1LAzEAhjNUsNb-B1eHO5NLcrlsSvGTgoM6l9wlkTsllaZ-bRYKDg4iHA7SodClCo4Wsfpv2os_wwPF5X3heeF5l0DFtI0CYAVBHzMWrWV-aq3xUciwxwmKfMQhgpBXQPWfLYK6tWkMKSEBYmFUBevfty_u89ENe-7rwU0H88F4T1yIg6STnnWL3qTo38-mo3IuRjfF293s_dU99ecfucvHbpi758kyWNDi1Kr6X9fA0dbmYWPHa-5v7zY2mp5FkEAv4ZyGIY5YyCnXSAqmAp5EEtNYEsi1IhHDmsdKYUI1jjHUNOYICSilDCTDNbD6670URgtz3Mra5x1TPrYym51cXXdtABFHZUD8AyQfY5U
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1901009
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application Research of Autoencoder Network in Malicious JavaScript Code Detection
EndPage 2084
ExternalDocumentID jsjkxyts201912010
GrantInformation_xml – fundername: The Science Foundation of Guizhou Province under Grant the J Word No.2328; the Science Foundation of Guizhou Province under Grant the LH Word No.7634
  funderid: (贵州省科学基金,黔科合J字[2011]); (贵州省科学基金,黔科合LH字[2014])
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1040-c995663876959f1da7e29c8d35bd409fe4873f9bee345f3b30f5b911a0ddd2d73
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 堆栈式稀疏降噪自编码网络(sSDAN)
JavaScript恶意代码
stacked sparse denoising autoencoder network (sSDAN)
机器学习
machine learning
JavaScript malicious code
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1040-c995663876959f1da7e29c8d35bd409fe4873f9bee345f3b30f5b911a0ddd2d73
PageCount 12
ParticipantIDs wanfang_journals_jsjkxyts201912010
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2019
Publisher 贵州大学 计算机软件与理论研究所,贵阳 550025
贵州大学 计算机科学与技术学院,贵阳 550025
Publisher_xml – name: 贵州大学 计算机科学与技术学院,贵阳 550025
– name: 贵州大学 计算机软件与理论研究所,贵阳 550025
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.2087965
Snippet TP391; 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法.首先...
SourceID wanfang
SourceType Aggregation Database
StartPage 2073
Title 自编码网络在JavaScript恶意代码检测中的应用研究
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201912010
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Na9VAMNTqwYsoKn5TxD2V1CS7ye7c3LymiGARrNBbyada5Sl9tVQPYqHgwYMIxYP0UOilCh4tYvXftC_-DGc2eXlpRakHL8vs13yyO7PJDmtZ10DERS7d1I5FFtj0RKENkAnbyaUsPJ4ozgvz2IScnlazs3Bn5MjWIBdm6bHsdtXyMjz9r6bGNjQ2pc7-g7kbpNiAMBodSzQ7locyPIsUwxO-1iySLOwwCAjQDsaMpmWSQQWEDDos8qnU6la8FN81OwiLAhoaBgbAUHOKRYJGa95CFFBVOQSEPlOhGaOYnqQxoGkiog41A2FaBNKop1ctGpBEOzQmvnXEtGEOAZCEHJkLjSRaGr59IqGDmpyKDJM4yzMiIZXmtjSLkAKiAcNIyEJpNIONfDikwjLo0VMHeypNaYMfxUTSYfs7iQsH7pwQIuQCVUJEkeXIsCyI_QHv43-VVJGF9EDnYVtSRIfKD-rptVr26dNoA8guXqfFCjBAmI_jOdGpEsBrPxRIboOoXdPAUfH2gvTabsep3oOpQxjPqZ7dO-geuZTKuEeiMdHQmKCg0HFgGBI0FzXne_OPlp8v9kihrmdyGY960gfyH7dfRsNAD30BtA-qVBf7MqYxMm52fnq1IPCHgTNWuXKCJrD2XS7ph2BTFwKPzlVe64Dr6loeiXT9TwKZRLxuEXfvt2LGmZPWifqwN6arRXrKGnnx4LR14-frT-X39-XGSvnjXbmzvre-NVx8_ZXt_urb3Z1N7O5vvup_ebP79XP5YXXv21q5tlVurJUft89Y96aimc5Nu37HxO65dGE3pexx9HMyAB8KN4tl7kGqMu4nGaqpyIWSvIAkz7nwC55wp_ATDEJiJ8syL5P8rDXafdLNz1ljXlq4flp4SZz6IuFBTB90lFQQc4W7rnveulpLPFdvSb2532x44TCDLlrHh6vokjW6uPAsv2wdS5cWH_YWrhjr_wJIt6fB
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%87%AA%E7%BC%96%E7%A0%81%E7%BD%91%E7%BB%9C%E5%9C%A8JavaScript%E6%81%B6%E6%84%8F%E4%BB%A3%E7%A0%81%E6%A3%80%E6%B5%8B%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E9%BE%99%E5%BB%B7%E8%89%B3&rft.au=%E4%B8%87%E8%89%AF&rft.au=%E4%B8%81%E7%BA%A2%E5%8D%AB&rft.date=2019-12-01&rft.pub=%E8%B4%B5%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%BD%AF%E4%BB%B6%E4%B8%8E%E7%90%86%E8%AE%BA%E7%A0%94%E7%A9%B6%E6%89%80%2C%E8%B4%B5%E9%98%B3+550025&rft.issn=1673-9418&rft.volume=13&rft.issue=12&rft.spage=2073&rft.epage=2084&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1901009&rft.externalDocID=jsjkxyts201912010
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg