计及风电的发电商报价多智能体模型

TP389; 新型电力系统背景下,新能源发电商的报价问题一直是电力现货市场中的研究热点.相比传统能源,风电出力受外界不确定性因素的影响较大,给风力发电商求解最优报价带来了挑战.为此,基于多智能体强化学习算法WoLF-PHC构建了计及风电的发电商报价策略模型.模型中,考虑了风电、火电和水电3种能源参与的现货市场,每一个发电商抽象为一个智能体,且基于随机约束规划算法建模风电智能体的收益函数;对于智能体的报价策略模型,将D3QN与WoLF-PHC算法结合,使模型能够满足报价时智能体状态空间复杂的情况;此外,对于交互环境的建模,提出利用DDPM扩散模型生成风电出力数据,优化风电出清场景的仿真.最后,基...

Full description

Saved in:
Bibliographic Details
Published in:计算机科学 Vol. 51; no. z1; pp. 1183 - 1190
Main Authors: 黄飞虎, 李沛东, 彭舰, 董石磊, 赵红磊, 宋卫平, 李强
Format: Journal Article
Language:Chinese
Published: 四川中电启明星信息技术有限公司 成都 610000 16.06.2024
四川大学计算机学院 成都 610065%四川大学计算机学院 成都 610065%四川中电启明星信息技术有限公司 成都 610000%国网信息通信产业集团有限公司 北京 102211
Subjects:
ISSN:1002-137X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract TP389; 新型电力系统背景下,新能源发电商的报价问题一直是电力现货市场中的研究热点.相比传统能源,风电出力受外界不确定性因素的影响较大,给风力发电商求解最优报价带来了挑战.为此,基于多智能体强化学习算法WoLF-PHC构建了计及风电的发电商报价策略模型.模型中,考虑了风电、火电和水电3种能源参与的现货市场,每一个发电商抽象为一个智能体,且基于随机约束规划算法建模风电智能体的收益函数;对于智能体的报价策略模型,将D3QN与WoLF-PHC算法结合,使模型能够满足报价时智能体状态空间复杂的情况;此外,对于交互环境的建模,提出利用DDPM扩散模型生成风电出力数据,优化风电出清场景的仿真.最后,基于3节点的电力仿真系统开展模拟实验,实验结果表明,提出的风电收益函数建模、WoLF-PHC 改进、风电出力生成等技术是可行的,能有效解决风电参与竞价的现货市场报价问题,并且能够在较少的迭代次数后学习到较优的策略.
AbstractList TP389; 新型电力系统背景下,新能源发电商的报价问题一直是电力现货市场中的研究热点.相比传统能源,风电出力受外界不确定性因素的影响较大,给风力发电商求解最优报价带来了挑战.为此,基于多智能体强化学习算法WoLF-PHC构建了计及风电的发电商报价策略模型.模型中,考虑了风电、火电和水电3种能源参与的现货市场,每一个发电商抽象为一个智能体,且基于随机约束规划算法建模风电智能体的收益函数;对于智能体的报价策略模型,将D3QN与WoLF-PHC算法结合,使模型能够满足报价时智能体状态空间复杂的情况;此外,对于交互环境的建模,提出利用DDPM扩散模型生成风电出力数据,优化风电出清场景的仿真.最后,基于3节点的电力仿真系统开展模拟实验,实验结果表明,提出的风电收益函数建模、WoLF-PHC 改进、风电出力生成等技术是可行的,能有效解决风电参与竞价的现货市场报价问题,并且能够在较少的迭代次数后学习到较优的策略.
Abstract_FL Under the background of new power system,the pricing problem of new energy generators has been a research hotspot in the electricity spot market.Compared with traditional energy,wind power output is subject to more uncertain factors,which poses a challenge to wind power generators in finding the optimal bid.To address this issue,this paper proposes a pricing strategy model for generators that takes into account of wind power based on the multi-agent reinforcement learning algorithm named WoLF-PHC.In the model,the spot market includes wind power,thermal power,and hydropower,and each generator is abstracted as an intelligent agent,and a stochastic constrained planning algorithm is used to model the profit function of the wind power agent.For the pricing strategy model of the agents,the D3QN algorithm is combined with the WoLF-PHC algorithm,which ena-bles the model to handle complex state spaces when bidding.In addition,to model the interactive environment,a DDPM diffusion model is proposed to generate wind power output data and optimize the simulation of wind power clearing scenarios.In this pa-per,simulation experiments are carried out based on a 3-node power simulation system.Experimental results show that the pro-posed wind power profit function modeling,WoLF-PHC improvement,wind power output generation,and other techniques are feasible,which can effectively solve the bidding pricing problem of wind power in the spot market,and learn better strategy after fewer iterations.
Author 李强
宋卫平
黄飞虎
董石磊
李沛东
彭舰
赵红磊
AuthorAffiliation 四川中电启明星信息技术有限公司 成都 610000;四川大学计算机学院 成都 610065%四川大学计算机学院 成都 610065%四川中电启明星信息技术有限公司 成都 610000%国网信息通信产业集团有限公司 北京 102211
AuthorAffiliation_xml – name: 四川中电启明星信息技术有限公司 成都 610000;四川大学计算机学院 成都 610065%四川大学计算机学院 成都 610065%四川中电启明星信息技术有限公司 成都 610000%国网信息通信产业集团有限公司 北京 102211
Author_FL SONG Weiping
DONG Shilei
HUANG Feihu
ZHAO Honglei
PENG Jian
LI Peidong
LI Qiang
Author_FL_xml – sequence: 1
  fullname: HUANG Feihu
– sequence: 2
  fullname: LI Peidong
– sequence: 3
  fullname: PENG Jian
– sequence: 4
  fullname: DONG Shilei
– sequence: 5
  fullname: ZHAO Honglei
– sequence: 6
  fullname: SONG Weiping
– sequence: 7
  fullname: LI Qiang
Author_xml – sequence: 1
  fullname: 黄飞虎
– sequence: 2
  fullname: 李沛东
– sequence: 3
  fullname: 彭舰
– sequence: 4
  fullname: 董石磊
– sequence: 5
  fullname: 赵红磊
– sequence: 6
  fullname: 宋卫平
– sequence: 7
  fullname: 李强
BookMark eNrjYmDJy89LZWCQMDTQMzS0sDTTzyrOyq7QMzI2MDMwMDS3ZGHgNDQwMNI1NDaP4GDgLS7OTDIwMjYzAUJDTgaDF-sWPu3verm47_mUrc9ntTztnwhkPJ3a9qxr6ZPd258umfVs5q4XzXuf7J38bMXCp_O6eRhY0xJzilN5oTQ3Q6iba4izh66Pv7uns6OPbrGhgbGZrrm5UZqJaXKSmVlimollmpGJhUGykUGShaGZebKpWapZUmKipUGauVmiZYqxpZG5ZVqKhYFRsplpIthxxobG3AxqEHPLE_PSEvPS47PyS4vygDbGg_1nZGBkUmVoaGZmDABpaVfQ
ClassificationCodes TP389
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11896/jsjkx.230600179
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Multi-agent Based Bidding Strategy Model Considering Wind Power
EndPage 1190
ExternalDocumentID jsjkx2024z1166
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1036-772f45cb66af49f2480c20b8167c56e6baa90f76a9d39279fd802c65ab0236313
ISSN 1002-137X
IngestDate Thu May 29 04:00:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords 电力现货市场
扩散模型
Electricity spot market
Multi-agent reinforcement learning
多智能体强化学习
WoLF-PHC
竞价策略
Bidding strategy
Diffusion model
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1036-772f45cb66af49f2480c20b8167c56e6baa90f76a9d39279fd802c65ab0236313
PageCount 8
ParticipantIDs wanfang_journals_jsjkx2024z1166
PublicationCentury 2000
PublicationDate 2024-06-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-16
  day: 16
PublicationDecade 2020
PublicationTitle 计算机科学
PublicationTitle_FL Computer Science
PublicationYear 2024
Publisher 四川中电启明星信息技术有限公司 成都 610000
四川大学计算机学院 成都 610065%四川大学计算机学院 成都 610065%四川中电启明星信息技术有限公司 成都 610000%国网信息通信产业集团有限公司 北京 102211
Publisher_xml – name: 四川大学计算机学院 成都 610065%四川大学计算机学院 成都 610065%四川中电启明星信息技术有限公司 成都 610000%国网信息通信产业集团有限公司 北京 102211
– name: 四川中电启明星信息技术有限公司 成都 610000
SSID ssib023646461
ssib051375750
ssib001164759
ssj0057673
Score 2.3892298
Snippet TP389; 新型电力系统背景下,新能源发电商的报价问题一直是电力现货市场中的研究热点.相比传统能源,风电出力受外界不确定性因素的影响较大,给风力发电商求解最优报价带来了...
SourceID wanfang
SourceType Aggregation Database
StartPage 1183
Title 计及风电的发电商报价多智能体模型
URI https://d.wanfangdata.com.cn/periodical/jsjkx2024z1166
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  issn: 1002-137X
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0057673
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR27btRAcJUEChreiDdXMFV0wmvvs7TvfKJAEUWQ0kU--wwEdKBciKK0oBRBIkJAQQqkCJCo6BASKH-TS8JfMLPey5lQAAWNtdqZnaftnX0OY9eFyotIatHs2cw0RVdmtEiYNWWRFUJozYuuy1pyS8_MmLk5e3ticm10Fmb5oe73zcqKffxfXY116Gw6OvsP7j4gihVYRqfjE92Oz79yPKQG4hRiDqkE0wETQ2ohjsCkkGqwAhLpCjEY4XEsr4EkWKxUkCpqG2MN1ieQaALFghoiyFpIYuJlIkjaDqcNNiJQbDx3m4JJ6uFvTTZNBasdqZYjhTXaSYJc2hAfTBmS-MifhHV6IFUkg_xNOkZBKm2noYIkBJs4gRCrNUaRJCFSJpkNJMEYYogtUiYbdCBxBTJYXJ8TCQXt3aqObLq32GmYOF6SrGPbninxqFszgLjjJDReQiwgH0LuOFugobnHQYubwBvFt2qBsaQ6aoykyGFooJb3XGKmXTPjYLbyxrRy6ym1Dscll4n0XL1H8lfwVl_eKq_1LzgcjGqxCudVrtXf-0FjaU5mYbDwYIX2-lNYWyXtOXS7uMMgE65yrtQkOxJqaXltasKF1XTp3DjspZwDqnYNoUT5MeoPRhEQDmF1dbDF6zbaHoBC3Tgkkjsr1y-z_t1aWDd7kh3347FGXH1Hp9jE6r3T7MQo10nDd31nWLD_eWu4sf7j_Yu911_2Np8NN15iYfhmbXf94873r8MPm7tvv-0_3d7ZfrX7aWv47vlZdqeTzrZuNn22keaA063cOMwshcy7SmWlsGUoTJCHQddwpXOpeqqbZTYotcpsgWMKbcvCBGGuZOYMEvHoHJvqP-r3zrOGtjrvicAaSav6prDdLMxFqaSUhcWGF9g1r_S8_3EM5n91xMU_Ylxix8Zv_mU2tbT4pHeFHc2Xl-4PFq86__0EqJ-NGA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%AE%A1%E5%8F%8A%E9%A3%8E%E7%94%B5%E7%9A%84%E5%8F%91%E7%94%B5%E5%95%86%E6%8A%A5%E4%BB%B7%E5%A4%9A%E6%99%BA%E8%83%BD%E4%BD%93%E6%A8%A1%E5%9E%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6&rft.au=%E9%BB%84%E9%A3%9E%E8%99%8E&rft.au=%E6%9D%8E%E6%B2%9B%E4%B8%9C&rft.au=%E5%BD%AD%E8%88%B0&rft.au=%E8%91%A3%E7%9F%B3%E7%A3%8A&rft.date=2024-06-16&rft.pub=%E5%9B%9B%E5%B7%9D%E4%B8%AD%E7%94%B5%E5%90%AF%E6%98%8E%E6%98%9F%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8+%E6%88%90%E9%83%BD+610000&rft.issn=1002-137X&rft.volume=51&rft.issue=z1&rft.spage=1183&rft.epage=1190&rft_id=info:doi/10.11896%2Fjsjkx.230600179&rft.externalDocID=jsjkx2024z1166
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkx%2Fjsjkx.jpg