基于改进近端策略优化算法的智能渗透路径研究

TP309; 渗透路径规划是渗透测试的首要步骤,对实现渗透测试的自动化有重大意义.现有渗透路径规划研究多将渗透测试建模为完全可观测的理想过程,难以准确反映部分可观测性的实际渗透测试过程.鉴于强化学习在渗透测试领域的广泛应用,将渗透测试过程建模为部分可观测的马尔可夫决策过程,从而更准确地模拟实际渗透测试过程.在此基础上,针对PPO算法使用全连接层拟合策略函数和价值函数无法提取部分可观测空间有效特征的问题,提出一种改进的PPO算法RPPO,其中策略网络和评估网络均融合全连接层和LSTM网络结构以提升其在未知环境提取特征的能力.同时,给出一种新的目标函数更新方法,以增强算法的鲁棒性和收敛性.实验结果...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:计算机科学 Ročník 51; číslo z2; s. 851 - 856
Hlavní autoři: 王紫阳, 王佳, 熊明亮, 王文涛
Médium: Journal Article
Jazyk:čínština
Vydáno: 新疆大学计算机科学与技术学院 乌鲁木齐 830000 16.11.2024
新疆维吾尔自治区多语种信息技术重点实验室 乌鲁木齐 830000
Témata:
ISSN:1002-137X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract TP309; 渗透路径规划是渗透测试的首要步骤,对实现渗透测试的自动化有重大意义.现有渗透路径规划研究多将渗透测试建模为完全可观测的理想过程,难以准确反映部分可观测性的实际渗透测试过程.鉴于强化学习在渗透测试领域的广泛应用,将渗透测试过程建模为部分可观测的马尔可夫决策过程,从而更准确地模拟实际渗透测试过程.在此基础上,针对PPO算法使用全连接层拟合策略函数和价值函数无法提取部分可观测空间有效特征的问题,提出一种改进的PPO算法RPPO,其中策略网络和评估网络均融合全连接层和LSTM网络结构以提升其在未知环境提取特征的能力.同时,给出一种新的目标函数更新方法,以增强算法的鲁棒性和收敛性.实验结果表明,在不同网络场景中,相较于现有A2C,PPO和NDSPI-DQN算法,RP-PO算法收敛轮次分别缩短了 21.21%,28.64%,22.85%,获得累计奖励分别提升了 66.01%,58.61%,132.64%,更适用于超过50台主机的较大规模网络环境.
AbstractList TP309; 渗透路径规划是渗透测试的首要步骤,对实现渗透测试的自动化有重大意义.现有渗透路径规划研究多将渗透测试建模为完全可观测的理想过程,难以准确反映部分可观测性的实际渗透测试过程.鉴于强化学习在渗透测试领域的广泛应用,将渗透测试过程建模为部分可观测的马尔可夫决策过程,从而更准确地模拟实际渗透测试过程.在此基础上,针对PPO算法使用全连接层拟合策略函数和价值函数无法提取部分可观测空间有效特征的问题,提出一种改进的PPO算法RPPO,其中策略网络和评估网络均融合全连接层和LSTM网络结构以提升其在未知环境提取特征的能力.同时,给出一种新的目标函数更新方法,以增强算法的鲁棒性和收敛性.实验结果表明,在不同网络场景中,相较于现有A2C,PPO和NDSPI-DQN算法,RP-PO算法收敛轮次分别缩短了 21.21%,28.64%,22.85%,获得累计奖励分别提升了 66.01%,58.61%,132.64%,更适用于超过50台主机的较大规模网络环境.
Abstract_FL Penetration path planning is the first step of penetration testing,which is important for the intelligent penetration tes-ting.Existing studies on penetration path planning always model penetration testing as a full observable process,which is difficult to describe the actual penetration testing with partial observability accurately.With the wide application of reinforcement learning in penetration testing,this paper models the penetration testing as a partially observable Markov decision process to simulate the practical penetration testing accurately.In general,the full connection of policy network and evaluation network in PPO cannot extract features effectively in penetration testing with partial observability.This paper proposes an improved PPO algorithm RP-PO,which integrating of full connection and long short term memory(LSTM)in the policy network and evaluation network.In addition,a new objective function updating is designed to improve the robustness and convergence.Experimental results show that,the proposed RPPO converges faster than A2C,PPO and NDSPI-DQN algorithms.Especially,the convergence iterations is reduced by 21.21%,28.64%and 22.85%respectively.Meanwhile RPPO gains more cumulative reward about 66.01%,58.61%and 132.64%,which is more suitable for larger-scale network environments with more than fifty hosts.
Author 王文涛
王紫阳
熊明亮
王佳
AuthorAffiliation 新疆大学计算机科学与技术学院 乌鲁木齐 830000;新疆维吾尔自治区多语种信息技术重点实验室 乌鲁木齐 830000
AuthorAffiliation_xml – name: 新疆大学计算机科学与技术学院 乌鲁木齐 830000;新疆维吾尔自治区多语种信息技术重点实验室 乌鲁木齐 830000
Author_FL WANG Jia
WANG Ziyang
WANG Wentao
XIONG Mingliang
Author_FL_xml – sequence: 1
  fullname: WANG Ziyang
– sequence: 2
  fullname: WANG Jia
– sequence: 3
  fullname: XIONG Mingliang
– sequence: 4
  fullname: WANG Wentao
Author_xml – sequence: 1
  fullname: 王紫阳
– sequence: 2
  fullname: 王佳
– sequence: 3
  fullname: 熊明亮
– sequence: 4
  fullname: 王文涛
BookMark eNotjztLw1AYhs9QwVq7-wvcUr_v3JJOIsUbFFwU3MpJkyNGScEgipNgR1EKvXgZdHEQ0Q6Cl6D2zzQ58V8YVJ7h3Z6XZ4oUwlboEzKDUEF0qnIuiIKdwwplSAFQigIpIgC1kNmbk6QcRdsuUCZ5DhbJfHITj-OztPueja6zUcc8DM1j3_Tuxh8XyWnfPA3S5565aqeXcXbymb4Nvo_Ps9dh8tU2t11z_zJNJrTajfzy_5bIxtLiem3Fqq8tr9YW6laEwKRFqdA2osc00qqnNQjhctHUWqB0bHCZLcBBlCCaXCqbc6cKnlKuKz3HcX3OSmT2z3ugQq3CrUbQ2t8L88fGby4Fyo9oLmA_K7tjVA
ClassificationCodes TP309
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11896/jsjkx.231200165
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Intelligent Penetration Path Based on Improved PPO Algorithm
EndPage 856
ExternalDocumentID jsjkx2024z2116
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1036-225f711d3f129dff055b45cff516870b3750811605c46a744890daabb6d88be43
ISSN 1002-137X
IngestDate Thu May 29 04:00:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue z2
Keywords 长短期记忆网络
Penetration path planning
渗透测试
渗透路径规划
Reinforcement learning
Proximal policy optimization
强化学习
Long and short term memory networks
近端策略优化
Penetration testing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1036-225f711d3f129dff055b45cff516870b3750811605c46a744890daabb6d88be43
PageCount 6
ParticipantIDs wanfang_journals_jsjkx2024z2116
PublicationCentury 2000
PublicationDate 2024-11-16
PublicationDateYYYYMMDD 2024-11-16
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-16
  day: 16
PublicationDecade 2020
PublicationTitle 计算机科学
PublicationTitle_FL Computer Science
PublicationYear 2024
Publisher 新疆大学计算机科学与技术学院 乌鲁木齐 830000
新疆维吾尔自治区多语种信息技术重点实验室 乌鲁木齐 830000
Publisher_xml – name: 新疆大学计算机科学与技术学院 乌鲁木齐 830000
– name: 新疆维吾尔自治区多语种信息技术重点实验室 乌鲁木齐 830000
SSID ssib023646461
ssib051375750
ssib001164759
ssj0057673
Score 2.3973663
Snippet TP309; 渗透路径规划是渗透测试的首要步骤,对实现渗透测试的自动化有重大意义.现有渗透路径规划研究多将渗透测试建模为完全可观测的理想过程,难以准确反映部分可观测性的...
SourceID wanfang
SourceType Aggregation Database
StartPage 851
Title 基于改进近端策略优化算法的智能渗透路径研究
URI https://d.wanfangdata.com.cn/periodical/jsjkx2024z2116
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1002-137X
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0057673
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0GoLBy68EW96wKdqIU5sxz6hZJsVp4pDkXqrNtkNUNCCuqWq9oREjwiE1AePA1w4IAQ9IPFYAf2Z7mb5C2Ycp00fEvTAxZq1x5nXOjO24hlCLvvgBFy3ISsJa2JSbSepxM1YABRjge2kESfcFJvwJybU1JS-MTTcLe7CzN_zWy21sKAf_FdTQx8YG6_O7sPcmw-FDoDB6NCC2aH9J8PTSFBdo2FAI46timgkqQZY00jRsEZ1WACMRj4NQhrUDDBOtURACxoIM71KtcIHqqodCiKqfXxg6CEaIgMJbkhoQ1RR5dFw3OAog6zxcwpVM0R9Q0vQMDKz4KeDvCEA02U5VkZ8IBewbXR11VCBHt_wL5DtYPN8EUdAYhUiEHIUDuiDEKG3BwpHRneMSKoCQ0gZ1RkdBtEekyWqROXKADgsH6C4HG8S5vc7zV_eooeOUZlEMsg6RzEKGfYlsOFMWesCx6DiHDnXr8XRaJXAHTPYGs0IXaEL-4cCW5kesLwzpjyMK0puypSk8fypsh-ziXvz9dpxS15J2SEb4OSZ3Hf7TqXxHGemPXN34QqE_fi1XV7HY0dGcoOBmuy4jMlhcsD1hWal4wwTimOiuq1QGesUyFLqQgHcw07BKaIm2Pb6-WUYK1nxSQEwdXUHS-Z-XSutt26VQsHJo-Sw3cONBvnaO0aGOrePkyNFfZRR6y5PkGu9N92N7tP-0vfB-uvB-vPsw1r2cSVbfrfx40XvyUr2abX_eTl7tdh_2R08_tn_tvr70bPB17Xer8Xs7VL2_stJcrMWTVavV2zBkkqbYWJv8I2pz1jDSyGKbqSpI0TMRZKmgknwizGIDBE4k45IuKz7nCvtNOr1OJYNpeIm906Rkdb9VvM0GRVawSszTbxEp7zJHM0TlXrojmOZpJydIZesDqbtu6c9vd0uZ_-KcY4c2loP58nI3OzD5gVyMJmfu9OevWjM-QdzaqQn
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E8%BF%91%E7%AB%AF%E7%AD%96%E7%95%A5%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95%E7%9A%84%E6%99%BA%E8%83%BD%E6%B8%97%E9%80%8F%E8%B7%AF%E5%BE%84%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6&rft.au=%E7%8E%8B%E7%B4%AB%E9%98%B3&rft.au=%E7%8E%8B%E4%BD%B3&rft.au=%E7%86%8A%E6%98%8E%E4%BA%AE&rft.au=%E7%8E%8B%E6%96%87%E6%B6%9B&rft.date=2024-11-16&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2+%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830000&rft.issn=1002-137X&rft.volume=51&rft.issue=z2&rft.spage=851&rft.epage=856&rft_id=info:doi/10.11896%2Fjsjkx.231200165&rft.externalDocID=jsjkx2024z2116
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkx%2Fjsjkx.jpg