无人机蜂群轨迹预测研究

V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测...

Full description

Saved in:
Bibliographic Details
Published in:航空工程进展 Vol. 14; no. 3; pp. 69 - 76
Main Authors: 张根源, 林智伟, 唐旭, 雷凯文
Format: Journal Article
Language:Chinese
Published: 西北机电工程研究所 一部, 咸阳 712099 01.06.2023
Subjects:
ISSN:1674-8190
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测时间小于仅采用LSTM网络方法预测的时间,可以较为准确地预测蜂群中不同集群无人机的轨迹,能够为反无人机蜂群火控解算提供参考.
AbstractList V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测时间小于仅采用LSTM网络方法预测的时间,可以较为准确地预测蜂群中不同集群无人机的轨迹,能够为反无人机蜂群火控解算提供参考.
Author 张根源
林智伟
雷凯文
唐旭
AuthorAffiliation 西北机电工程研究所 一部, 咸阳 712099
AuthorAffiliation_xml – name: 西北机电工程研究所 一部, 咸阳 712099
Author_FL LIN Zhiwei
TANG Xu
LEI Kaiwen
ZHANG Genyuan
Author_FL_xml – sequence: 1
  fullname: ZHANG Genyuan
– sequence: 2
  fullname: LIN Zhiwei
– sequence: 3
  fullname: TANG Xu
– sequence: 4
  fullname: LEI Kaiwen
Author_xml – sequence: 1
  fullname: 张根源
– sequence: 2
  fullname: 林智伟
– sequence: 3
  fullname: 唐旭
– sequence: 4
  fullname: 雷凯文
BookMark eNrjYmDJy89LZWBQMTTQMzQzMzTVz9JLzsvOBHLMTXQtDC0N9IwMjIz1DIDInIWBEy7MwcBbXJyZZGBgbmhkbGpqyMmg-Gz6gie7dj2bs-vFnKbn-5a82Lvixf6dLxe1PNva_XzBlOcrt_EwsKYl5hSn8kJpboZQN9cQZw9dH393T2dHH91iQwMjc10LI0MDczMT4zQD4xRLg6SkxFSjRPPkZEOjVGPLJCMLi1SDRIvEFCPDRLNUI-O0VAvjVNNkQ4sUC9NUc_Mk45REY24GdYi55Yl5aYl56fFZ-aVFeUAb4zOy05OzqkA-MjAGOt0YAPz7UO0
ClassificationCodes V279%V249%TP183
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16615/j.cnki.1674-8190.2023.03.07
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research on trajectory prediction of UAV drone swarm
EndPage 76
ExternalDocumentID hkgcjz202303007
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1027-82107643f03d90bbae2a7cc12e39b288e0a8ad21a6e23fe83e5c18d85e77b3da3
ISSN 1674-8190
IngestDate Thu May 29 04:09:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords LSTM网络
无人机蜂群
分形算法
卡尔曼滤波
轨迹预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-82107643f03d90bbae2a7cc12e39b288e0a8ad21a6e23fe83e5c18d85e77b3da3
PageCount 8
ParticipantIDs wanfang_journals_hkgcjz202303007
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 航空工程进展
PublicationTitle_FL Advances in Aeronautical Science and Engineering
PublicationYear 2023
Publisher 西北机电工程研究所 一部, 咸阳 712099
Publisher_xml – name: 西北机电工程研究所 一部, 咸阳 712099
SSID ssib007123551
ssib036435654
ssib005211192
ssib051375390
ssj0002912185
Score 2.3568556
Snippet V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为...
SourceID wanfang
SourceType Aggregation Database
StartPage 69
Title 无人机蜂群轨迹预测研究
URI https://d.wanfangdata.com.cn/periodical/hkgcjz202303007
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-8190
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002912185
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFA-1ingRRcVvVmhOZetMMpO8HGe2s4iH4qFCbyWzM9PWllG6tZQexZtXwUsPRTzoH6DggvrPyO76X_heZnZ3rOLHQVjC4yV5-SUvyXuZzQdjCybXqaU7W3WWa1ygSNW2YSDbClQBFv0HEWbusQm9sgJra-bB3Kn7k7Mw-zu6LOHgwDz5r6pGHiqbjs7-g7qnQpGBNCodQ1Q7hn-leJ4objSPPJ4EPI7oR5yOI4AIEDzRPE54FBAnXuYROKLLY8MTwyPBIaBcccghpsQozQSOMDxWTY-WMgLwKJrEIhHyGOnQccBJcMJN7KJ8Xj14SXp2jI4Dqyik8hXJMN4sCaJPqEpEVAUElMl0m1IQnvEmdV-exRgqFuFgEsCYrkuieG1_6-8dQs72ZbkeSoixAgia8nUmpVeNqKkwbJpf1PNkS1EuMBy8RQcaaGMJQgJJGbB3O-SCIggotpJc1O6cccNYKB20yaP6wZoEjVEjG6ahepGmdjKqN29-Ml_oLIXOfvXK7a2lqfwlagd3F6-eme3pZsrN7Y3eo0NKghM2XaxwWujQmMbnBTfX4krfN80zxAJdzencLtEzDRtX64W-xIVs_Q8qeTXC-OgN0o7gKayzbGEC-u5vILvjcGVhy42G57Z6gZ2vl1ytqBoqF9nc4eYldmf46vjrYDA8GoyPno0-vxl_ejv-8vHb6-fD9y9Gxy9H7z5cZg-7yWrnXrt-LqTdRy8ZfS3hexqrUXgyM16a2lxY3ev5IpcmFQC5Z8FmwrcqF7LIQeZhz4cMwlzrVGZWXmHz5eMyv8paWnm6CCDTltbnaWYLX2srbQA4r0llrrFWXaX1euT310-o4fqfk9xg52Yd_Cab39t9mt9iZ3r7e1v93dtOfd8BlSt2Bw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%97%A0%E4%BA%BA%E6%9C%BA%E8%9C%82%E7%BE%A4%E8%BD%A8%E8%BF%B9%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%88%AA%E7%A9%BA%E5%B7%A5%E7%A8%8B%E8%BF%9B%E5%B1%95&rft.au=%E5%BC%A0%E6%A0%B9%E6%BA%90&rft.au=%E6%9E%97%E6%99%BA%E4%BC%9F&rft.au=%E5%94%90%E6%97%AD&rft.au=%E9%9B%B7%E5%87%AF%E6%96%87&rft.date=2023-06-01&rft.pub=%E8%A5%BF%E5%8C%97%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E6%89%80+%E4%B8%80%E9%83%A8%2C+%E5%92%B8%E9%98%B3+712099&rft.issn=1674-8190&rft.volume=14&rft.issue=3&rft.spage=69&rft.epage=76&rft_id=info:doi/10.16615%2Fj.cnki.1674-8190.2023.03.07&rft.externalDocID=hkgcjz202303007
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkgcjz%2Fhkgcjz.jpg