无人机蜂群轨迹预测研究
V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测...
Saved in:
| Published in: | 航空工程进展 Vol. 14; no. 3; pp. 69 - 76 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | Chinese |
| Published: |
西北机电工程研究所 一部, 咸阳 712099
01.06.2023
|
| Subjects: | |
| ISSN: | 1674-8190 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测时间小于仅采用LSTM网络方法预测的时间,可以较为准确地预测蜂群中不同集群无人机的轨迹,能够为反无人机蜂群火控解算提供参考. |
|---|---|
| AbstractList | V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为了准确且快速地预测无人机蜂群轨迹,提出一种面向蜂群的轨迹预测方法.在获得蜂群轨迹后,首先采用具有噪声的基于密度的聚类(DBSCAN)方法对其进行聚类,判断出蜂群中各个无人机的类别;然后基于分形算法,判断无人机轨迹是简单轨迹还是复杂轨迹;最后采用卡尔曼滤波进行简单轨迹预测,基于长短期记忆(LSTM)网络方法进行复杂轨迹的预测.结果表明:本文提出的无人机蜂群轨迹预测方法的预测误差远小于仅采用卡尔曼滤波方法的预测误差,且预测时间小于仅采用LSTM网络方法预测的时间,可以较为准确地预测蜂群中不同集群无人机的轨迹,能够为反无人机蜂群火控解算提供参考. |
| Author | 张根源 林智伟 雷凯文 唐旭 |
| AuthorAffiliation | 西北机电工程研究所 一部, 咸阳 712099 |
| AuthorAffiliation_xml | – name: 西北机电工程研究所 一部, 咸阳 712099 |
| Author_FL | LIN Zhiwei TANG Xu LEI Kaiwen ZHANG Genyuan |
| Author_FL_xml | – sequence: 1 fullname: ZHANG Genyuan – sequence: 2 fullname: LIN Zhiwei – sequence: 3 fullname: TANG Xu – sequence: 4 fullname: LEI Kaiwen |
| Author_xml | – sequence: 1 fullname: 张根源 – sequence: 2 fullname: 林智伟 – sequence: 3 fullname: 唐旭 – sequence: 4 fullname: 雷凯文 |
| BookMark | eNrjYmDJy89LZWBQMTTQMzQzMzTVz9JLzsvOBHLMTXQtDC0N9IwMjIz1DIDInIWBEy7MwcBbXJyZZGBgbmhkbGpqyMmg-Gz6gie7dj2bs-vFnKbn-5a82Lvixf6dLxe1PNva_XzBlOcrt_EwsKYl5hSn8kJpboZQN9cQZw9dH393T2dHH91iQwMjc10LI0MDczMT4zQD4xRLg6SkxFSjRPPkZEOjVGPLJCMLi1SDRIvEFCPDRLNUI-O0VAvjVNNkQ4sUC9NUc_Mk45REY24GdYi55Yl5aYl56fFZ-aVFeUAb4zOy05OzqkA-MjAGOt0YAPz7UO0 |
| ClassificationCodes | V279%V249%TP183 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16615/j.cnki.1674-8190.2023.03.07 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Research on trajectory prediction of UAV drone swarm |
| EndPage | 76 |
| ExternalDocumentID | hkgcjz202303007 |
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
| ID | FETCH-LOGICAL-s1027-82107643f03d90bbae2a7cc12e39b288e0a8ad21a6e23fe83e5c18d85e77b3da3 |
| ISSN | 1674-8190 |
| IngestDate | Thu May 29 04:09:12 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | LSTM网络 无人机蜂群 分形算法 卡尔曼滤波 轨迹预测 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1027-82107643f03d90bbae2a7cc12e39b288e0a8ad21a6e23fe83e5c18d85e77b3da3 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_hkgcjz202303007 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 航空工程进展 |
| PublicationTitle_FL | Advances in Aeronautical Science and Engineering |
| PublicationYear | 2023 |
| Publisher | 西北机电工程研究所 一部, 咸阳 712099 |
| Publisher_xml | – name: 西北机电工程研究所 一部, 咸阳 712099 |
| SSID | ssib007123551 ssib036435654 ssib005211192 ssib051375390 ssj0002912185 |
| Score | 2.3568556 |
| Snippet | V279%V249%TP183; 传统防空火控算法中的轨迹预测模型无法对复杂的无人机蜂群进行有效轨迹预测,而现有针对无人机机动轨迹的预测研究通常只考虑单个无人机,模型量级过大.为... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 69 |
| Title | 无人机蜂群轨迹预测研究 |
| URI | https://d.wanfangdata.com.cn/periodical/hkgcjz202303007 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-8190 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002912185 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFA-1ingRRcVvVmhOZetMMpO8HGe2s4iH4qFCbyWzM9PWllG6tZQexZtXwUsPRTzoH6DggvrPyO76X_heZnZ3rOLHQVjC4yV5-SUvyXuZzQdjCybXqaU7W3WWa1ygSNW2YSDbClQBFv0HEWbusQm9sgJra-bB3Kn7k7Mw-zu6LOHgwDz5r6pGHiqbjs7-g7qnQpGBNCodQ1Q7hn-leJ4objSPPJ4EPI7oR5yOI4AIEDzRPE54FBAnXuYROKLLY8MTwyPBIaBcccghpsQozQSOMDxWTY-WMgLwKJrEIhHyGOnQccBJcMJN7KJ8Xj14SXp2jI4Dqyik8hXJMN4sCaJPqEpEVAUElMl0m1IQnvEmdV-exRgqFuFgEsCYrkuieG1_6-8dQs72ZbkeSoixAgia8nUmpVeNqKkwbJpf1PNkS1EuMBy8RQcaaGMJQgJJGbB3O-SCIggotpJc1O6cccNYKB20yaP6wZoEjVEjG6ahepGmdjKqN29-Ml_oLIXOfvXK7a2lqfwlagd3F6-eme3pZsrN7Y3eo0NKghM2XaxwWujQmMbnBTfX4krfN80zxAJdzencLtEzDRtX64W-xIVs_Q8qeTXC-OgN0o7gKayzbGEC-u5vILvjcGVhy42G57Z6gZ2vl1ytqBoqF9nc4eYldmf46vjrYDA8GoyPno0-vxl_ejv-8vHb6-fD9y9Gxy9H7z5cZg-7yWrnXrt-LqTdRy8ZfS3hexqrUXgyM16a2lxY3ev5IpcmFQC5Z8FmwrcqF7LIQeZhz4cMwlzrVGZWXmHz5eMyv8paWnm6CCDTltbnaWYLX2srbQA4r0llrrFWXaX1euT310-o4fqfk9xg52Yd_Cab39t9mt9iZ3r7e1v93dtOfd8BlSt2Bw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%97%A0%E4%BA%BA%E6%9C%BA%E8%9C%82%E7%BE%A4%E8%BD%A8%E8%BF%B9%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%88%AA%E7%A9%BA%E5%B7%A5%E7%A8%8B%E8%BF%9B%E5%B1%95&rft.au=%E5%BC%A0%E6%A0%B9%E6%BA%90&rft.au=%E6%9E%97%E6%99%BA%E4%BC%9F&rft.au=%E5%94%90%E6%97%AD&rft.au=%E9%9B%B7%E5%87%AF%E6%96%87&rft.date=2023-06-01&rft.pub=%E8%A5%BF%E5%8C%97%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E6%89%80+%E4%B8%80%E9%83%A8%2C+%E5%92%B8%E9%98%B3+712099&rft.issn=1674-8190&rft.volume=14&rft.issue=3&rft.spage=69&rft.epage=76&rft_id=info:doi/10.16615%2Fj.cnki.1674-8190.2023.03.07&rft.externalDocID=hkgcjz202303007 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkgcjz%2Fhkgcjz.jpg |