Design of a Computational Heuristic to Solve the Nonlinear Liénard Differential Model
In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local search approaches. The global search genetic algorithm (GA) and local search...
Uložené v:
| Vydané v: | Computer modeling in engineering & sciences Ročník 136; číslo 1; s. 201 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Henderson
Tech Science Press
01.01.2023
|
| Predmet: | |
| ISSN: | 1526-1492, 1526-1506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local search approaches. The global search genetic algorithm (GA) and local search sequential quadratic programming scheme (SQPS) are implemented to solve the nonlinear Liénard model. An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS. The motivation of the ANN procedures along with GA-SQPS comes to present reliable, feasible and precise frameworks to tackle stiff and highly nonlinear differential models. The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models. The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness, viability and efficacy. Moreover, statistical performances based on different measures are also provided to check the reliability of the ANN along with GA-SQPS. |
|---|---|
| AbstractList | In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local search approaches. The global search genetic algorithm (GA) and local search sequential quadratic programming scheme (SQPS) are implemented to solve the nonlinear Liénard model. An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS. The motivation of the ANN procedures along with GA-SQPS comes to present reliable, feasible and precise frameworks to tackle stiff and highly nonlinear differential models. The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models. The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness, viability and efficacy. Moreover, statistical performances based on different measures are also provided to check the reliability of the ANN along with GA-SQPS. |
| Author | Baskonus, Haci Sabir, Zulqurnain Ilhan, Esin Asif, Muhammad Li, Yan Gao, Wei |
| Author_xml | – sequence: 1 givenname: Yan surname: Li fullname: Li, Yan – sequence: 2 givenname: Zulqurnain surname: Sabir fullname: Sabir, Zulqurnain – sequence: 3 givenname: Esin surname: Ilhan fullname: Ilhan, Esin – sequence: 4 givenname: Muhammad surname: Asif fullname: Asif, Muhammad – sequence: 5 givenname: Wei surname: Gao fullname: Gao, Wei – sequence: 6 givenname: Haci surname: Baskonus fullname: Baskonus, Haci |
| BookMark | eNo1jkFOwzAUBS1UJNrCAdhZYp3ybSdOvEQpUKQCCyq2lWt_g6vULrHDnTgHFyMSsJq3maeZkUmIAQm5ZLAQXEJ5bQ6YFhy4WACvQJUnZMoqLgtWgZz871LxMzJLaQ8gpGjUlLwuMfm3QKOjmrbxcByyzj4G3dEVDr1P2RuaI32J3SfS_I70KYbOB9Q9Xfvvr6B7S5feOewxZD9qj9Fid05One4SXvxxTjZ3t5t2Vayf7x_am3VxVE0urMLaAau0Eo5p1zQ7a3SNvNyBE1Y3yFGKUhppnQCjmW2YNjWrjBwVKZmYk6vf22MfPwZMebuPQz_Gp63gAIzzWknxA_qDVrc |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.32604/cmes.2023.025094 |
| DatabaseName | Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| GroupedDBID | -~X 7SC 7TB 8FD 8FE 8FG AAFWJ ABJCF ABUWG ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO EBS EJD F5P FR3 GNUQQ HCIFZ J9A JQ2 K7- KR7 L6V L7M L~C L~D M7S OK1 P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS RTS |
| ID | FETCH-LOGICAL-p98t-d9e7f015a93f1af88bdca7e24b0f3da8e2e6346c6df30ca1d81ac715c65a96613 |
| IEDL.DBID | BENPR |
| ISSN | 1526-1492 |
| IngestDate | Sat Sep 06 07:31:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p98t-d9e7f015a93f1af88bdca7e24b0f3da8e2e6346c6df30ca1d81ac715c65a96613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3200122796?pq-origsite=%requestingapplication% |
| PQID | 3200122796 |
| PQPubID | 2048798 |
| ParticipantIDs | proquest_journals_3200122796 |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| SSID | ssj0036389 |
| Score | 2.373507 |
| Snippet | In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 201 |
| SubjectTerms | Artificial neural networks Boundary conditions Design Genetic algorithms Heuristic Quadratic programming Searching |
| Title | Design of a Computational Heuristic to Solve the Nonlinear Liénard Differential Model |
| URI | https://www.proquest.com/docview/3200122796 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1492 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1492 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1492 databaseCode: M7S dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1492 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1492 databaseCode: PIMPY dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4EPHgRn_GBpAevFXZbut2TUYFgVLIRYtALabvdhARZhIX_5O_wjzndLTHx4MXLXiabNJ3pzDePzIfQJVNaANCNCZeQmzAmPSIgShCueBJTj6kmK8gmgn5fjEZh5ApuSzdWufGJuaOOU21r5A3q512gIOTX8w9iWaNsd9VRaJRQxW4qAzuv3Hb60fPGF1Mbj_ONqT4nkAv4RV8TIEuTNfS7sfu6fXplcYBlLf7ljfMQ063-93B7aNeBS3xTWMM-2jKzA1TdEDdg944P0Us7n9vAaYIlLsSuJoh7ZlXsbsZZigfpdG0wQETcLzZqyAV-nHx9zsCscNtRq4CLmGJLqTY9QsNuZ3jXI45ggcxDkZE4NEECcECGNPFkIoSKtQyMDwpKaCyF8Q2njGseJ7SppRcLT-rAa2kOv0Bcp8eoPEtn5gRh1VKAswAMmUAy3jKCSSmaSijIFo1K9CmqbS5u7B7Jcvxza2d_i8_RjtVTUfmooXK2WJkLtK3X2WS5qDud11HpISB1O7w5gG_UegNJdP8UvX4Drwa7rg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CnqxPvHtHvQYTbLbzeYgIlZpsZaCReqp7G42UKhN7Uv8SR78Ff4xZ_NA8OCtB89LQpKZfPPNzO58AKdMaYFEN3K4xNyEMek5AqOEwxWPI-ox5bJMbCJoNkWnE7YW4LM4C2O3VRaYmAJ1lGhbI7-gftoFCkJ-NXx1rGqU7a4WEhqZW9yb9zdM2caX9Sra98z3727bNzUnVxVwhqGYOFFoghhjoAxp7MlYCBVpGRgfnyqmkRTGN5wyrnkUU1dLLxKe1IFX0RwvwWBG8baLsMTQ190SLLXqD63nAvqpDf_pgFafO5h6-FkbFRmSyy70i7HjwX16bmmHFUn-Bf5pRLsr_7NvsQ5rOXUm15mvb8CCGWxCuZClIDlKbcFTNd2VQpKYSJIt5xVPUjPTbDI1mSTkMenPDEECTJrZvBA5Io3e18cAfxpSzYVjEAD7xArG9behPY-X24HSIBmYXSCqopBFItUzgWS8YgSTUrhKKMyFjYr1HhwWdurmEDDu_hhp_-_lE1iptR8a3Ua9eX8Aq9ZFshrPIZQmo6k5gmU9m_TGo-Pc3Qh052zUb_o6FeI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+Computational+Heuristic+to+Solve+the+Nonlinear+Li%C3%A9nard+Differential+Model&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Li%2C+Yan&rft.au=Sabir%2C+Zulqurnain&rft.au=Ilhan%2C+Esin&rft.au=Asif%2C+Muhammad&rft.date=2023-01-01&rft.pub=Tech+Science+Press&rft.issn=1526-1492&rft.eissn=1526-1506&rft.volume=136&rft.issue=1&rft.spage=201&rft_id=info:doi/10.32604%2Fcmes.2023.025094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1492&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1492&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1492&client=summon |