Points of Significance: Regression diagnostics

So far in our discussion of linear regression, we have seen that the estimated regression coefficients and predicted values can be difficult to interpret1. When the predictors are correlated2, the magnitude and even the sign of the estimated regression coefficients can be highly variable, although t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature methods Ročník 13; číslo 5; s. 385
Hlavní autoři: Altman, Naomi, Krzywinski, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group 01.05.2016
Témata:
ISSN:1548-7091, 1548-7105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:So far in our discussion of linear regression, we have seen that the estimated regression coefficients and predicted values can be difficult to interpret1. When the predictors are correlated2, the magnitude and even the sign of the estimated regression coefficients can be highly variable, although the predicted values may be stable. When outliers are present3, both the estimated regression coefficients and the predicted values can be influenced. This month, we discuss diagnostics for the robustness of the estimates and of the statistical inferencethat is, the t-tests, confidence intervals and prediction intervals that are computed on the basis of assumptions that the errors are additive, normal and independent and have zero mean and constant variance.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.3854