To the Theory of C 0-Operator Orthogonal Polynomials

Operator orthogonal polynomials are considered whose arguments are generators of strongly continuous semigroups of transformations of class C0 acting in a Banach space. Earlier such polynomials were considered by the authors in the case of the Chebyshev polynomials of the first and second kind. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) Jg. 234; H. 3; S. 350 - 356
Hauptverfasser: Kostin, V A, M. N. Nebol’sina
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer Nature B.V 01.10.2018
Schlagworte:
ISSN:1072-3374, 1573-8795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Operator orthogonal polynomials are considered whose arguments are generators of strongly continuous semigroups of transformations of class C0 acting in a Banach space. Earlier such polynomials were considered by the authors in the case of the Chebyshev polynomials of the first and second kind. In this paper, more general classes of operator orthogonal polynomials are considered, which include the Jacobi and Aptekarev polynomials. Integral representations of operator fractional-rational functions and also of Bessel operator-valued functions of an imaginary argument are presented.
AbstractList Operator orthogonal polynomials are considered whose arguments are generators of strongly continuous semigroups of transformations of class C0 acting in a Banach space. Earlier such polynomials were considered by the authors in the case of the Chebyshev polynomials of the first and second kind. In this paper, more general classes of operator orthogonal polynomials are considered, which include the Jacobi and Aptekarev polynomials. Integral representations of operator fractional-rational functions and also of Bessel operator-valued functions of an imaginary argument are presented.
Author Kostin, V A
M. N. Nebol’sina
Author_xml – sequence: 1
  givenname: V
  surname: Kostin
  middlename: A
  fullname: Kostin, V A
– sequence: 2
  fullname: M. N. Nebol’sina
BookMark eNotjs1KxDAYRYOM4MzoA7gLuI5-X36aZCmDfzBQF90PSZNah9rUpAPO21vQ1bmbczkbshrTGAm5RbhHAP1QEKwyDNAwCYjs54KsUWnBjLZqtWzQnAmh5RXZlHKExamMWBPZJDr3kTZ9TPlMU0d3FFg9xezmlGmd5z59pNEN9D0N5zF9fbqhXJPLbkG8-eeWNM9Pze6V7euXt93jnk3WzEy6wHXLO2iVdt4p7kOQHrEVsgsqthE7AwhcCS88Vhi4b71RwUaINlZCbMnd3-2U0_cplvlwTKe8tJQDB2ugMlwZ8Quf-Eje
ContentType Journal Article
Copyright Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Copyright Springer Science & Business Media 2018
DOI 10.1007/s10958-018-4011-x
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 356
GroupedDBID -~X
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~8M
~A9
~EX
ID FETCH-LOGICAL-p98t-4ad27c2f0c57aba52bdd4b11c34fd5ece1f8010253b3b161d2bcb85d9e0e9e633
ISSN 1072-3374
IngestDate Wed Sep 17 13:51:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p98t-4ad27c2f0c57aba52bdd4b11c34fd5ece1f8010253b3b161d2bcb85d9e0e9e633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2098068258
PQPubID 2043545
PageCount 7
ParticipantIDs proquest_journals_2098068258
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationYear 2018
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0007683
Score 2.1073332
Snippet Operator orthogonal polynomials are considered whose arguments are generators of strongly continuous semigroups of transformations of class C0 acting in a...
SourceID proquest
SourceType Aggregation Database
StartPage 350
SubjectTerms Banach spaces
Chebyshev approximation
Mathematical analysis
Operators (mathematics)
Polynomials
Rational functions
Title To the Theory of C 0-Operator Orthogonal Polynomials
URI https://www.proquest.com/docview/2098068258
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwoEeEJ9qoUU-IC6Vq9iOY_uIqlaVaHcrCNXeVrFjQ6Ul2W6WahF_Hjt2ki0VCA5crMSJHFlvMrZn5s0A8MZndVPC_YCllQKlsuRIWZIh6UmaJOFWGt0Wm-DjsZhO5cVo9KPjwtzMeVWJ9Vou_ivUrs-B7amz_wB3P6jrcNcOdNc62F37d8CHzWQg3bfRFgcJmixM608_mCxXX-rPrfnvop5_96TkYt78Zov6tc_p2lEndbDS_lq_Z8Oe8L5uYl6Cy8FOen7oXnMKVdXzLrpCNrFwd2dzwKKPXrttc_QB1d7N0XNiWhWacIIoDbV3Dk1Uq5wiX9Z8U--SaMW82jyXt1qUhly0cUGmIfP4HV2fdNxnyXw8npM0b-5dDwtb58wfT2Ynn87OZvnxNH-7uEa-5Jh3zcf6K_fAfcKZ9Fr9w8fLfhl357DAzojT6VzigXd5-5t3FvJ2d5I_Bo8iZvBdEIcnYGSqp2D7vMeveQbSvIbuFgbBgLWFR3AQDDgIBtwQjOcgPznOj05RrJmBFlKsUFqUhGtiE814oQpGVFmmCmNNU1syow22wmcRZFRR5Tb7JVFaCVZKkxhpMkpfgK2qrswOgEpRjK3V1voUiRjLAmduMCsyZooizXbBXjfnWRT_ZkYSKZJMECZe_vnxK_BwEKw9sLVafjP74IG-WV01y9ctEj8BzklQWg
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=To+the+Theory+of+C+0-Operator+Orthogonal+Polynomials&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kostin%2C+V+A&rft.au=M.+N.+Nebol%E2%80%99sina&rft.date=2018-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=234&rft.issue=3&rft.spage=350&rft.epage=356&rft_id=info:doi/10.1007%2Fs10958-018-4011-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon