Iterative K-Line Meshing via Non-Linear Least Squares Interpolation of Affectively Decorated Media Repositories

We present an algorithm that organizes a song repository upon recording a user's memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network's connections correspond to a person's recorded memory experiences rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open artificial intelligence journal Jg. 2; S. 46 - 61
Hauptverfasser: Toptsis, Anestis A, Dubitski, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2008
Schlagworte:
ISSN:1874-0618, 1874-0618
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present an algorithm that organizes a song repository upon recording a user's memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network's connections correspond to a person's recorded memory experiences related to song preferences when the person is at different states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm synthesizes playlists that conform to desired affective states. The method for the network formation is highly individualized, in the sense that it takes in account an individual's music preferences which are typically subjective and may differ from user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre. In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation results from the introspection of our algorithms' execution and from feedback recorded during the evaluation by human test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical paradigm of random song selection.
AbstractList We present an algorithm that organizes a song repository upon recording a user's memory experiences from previous music listening activities. Our method forms an affectively annotated network of songs. The network's connections correspond to a person's recorded memory experiences related to song preferences when the person is at different states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm synthesizes playlists that conform to desired affective states. The method for the network formation is highly individualized, in the sense that it takes in account an individual's music preferences which are typically subjective and may differ from user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre. In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation results from the introspection of our algorithms' execution and from feedback recorded during the evaluation by human test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical paradigm of random song selection.
Author Dubitski, Alexander
Toptsis, Anestis A
Author_xml – sequence: 1
  givenname: Anestis
  surname: Toptsis
  middlename: A
  fullname: Toptsis, Anestis A
– sequence: 2
  givenname: Alexander
  surname: Dubitski
  fullname: Dubitski, Alexander
BookMark eNqFjMtOwzAQRS1UJNrCF7DxClaBceJHvKzKqyKABN1XrjOGoGCncVKJvyctLFjBZu7o6N4zISMfPBJyyuAiZYpfslxxkCwHyCEFBsDlARnvaLLDo1__EZnE-A4gU83ZmIRFh63pqi3S-6SoPNIHjG-Vf6XbytDH4PfQtLRAEzv6sulNi5Eu_DBrQj0sg6fB0ZlzaHea-pNeoQ2DE8vBVQ6WZ2xCrLrQVhiPyaEzdcSTn5yS5c31cn6XFE-3i_msSBotRKIsWExLVRoNTIAsGdNraa0SaWm5w1TlWoGUgrtMoBNGDHeNcq2dVsKxbErOv7VNGzY9xm71UUWLdW08hj6utMxyrpUU_zchk1zm--bZn82M8xw4z7IvBLh7IA
ContentType Journal Article
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.2174/1874061800802010046
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Music
EISSN 1874-0618
EndPage 61
GroupedDBID 123
29N
2WC
7SC
8FD
ALMA_UNASSIGNED_HOLDINGS
C1A
CS3
E3Z
EBS
EJD
JBO
JQ2
L7M
L~C
L~D
M~E
OK1
OVT
ID FETCH-LOGICAL-p955-7c0ce2d7da901506d119b6cc752dc4fe2789706654f35ef5a55efbe6b9f975f13
ISSN 1874-0618
IngestDate Sun Nov 09 12:33:59 EST 2025
Fri Jul 11 07:21:10 EDT 2025
Thu Oct 02 05:22:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p955-7c0ce2d7da901506d119b6cc752dc4fe2789706654f35ef5a55efbe6b9f975f13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34480443
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_963849765
proquest_miscellaneous_903646865
proquest_miscellaneous_34480443
PublicationCentury 2000
PublicationDate 20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 20080101
  day: 01
PublicationDecade 2000
PublicationTitle Open artificial intelligence journal
PublicationYear 2008
SSID ssj0062941
Score 1.6484495
Snippet We present an algorithm that organizes a song repository upon recording a user's memory experiences from previous music listening activities. Our method forms...
SourceID proquest
SourceType Aggregation Database
StartPage 46
SubjectTerms Algorithms
Feedback
Media
Meshing
Music
Networks
Recording
Repositories
Title Iterative K-Line Meshing via Non-Linear Least Squares Interpolation of Affectively Decorated Media Repositories
URI https://www.proquest.com/docview/34480443
https://www.proquest.com/docview/903646865
https://www.proquest.com/docview/963849765
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1874-0618
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062941
  issn: 1874-0618
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEOXNn0h6ZND0SUQakmkSI5B6yBFHbdAVcCboQcJCDAkxbKNZEh-e-4oWlZa9zV0IQxCoATfh-PxePd9hLyFsD4aaozceJh4jHHmKQZnHgOxUSIjQIyfW7EJMZnI6VR9HQyuNr0w67koS3lxoer_amqYA2Nj6-w_mLtbFCbgNxgdRjA7jH9l-E-WJxkLgj57Y4whz3SbZloXydGkKu1kskBm1WZ59O18hR1IbWawruZdBHlsCz1gmfklOKUMkQKxKd7rJDZqbwqkF3EViC66xeoUZE0qHC1F0ef77H-8TWvXy8ZpIZdI9dFs06ofV2mxdILaXQfOrfyE7OUnWpcqBUP9iNbL6h1zzg8HPT_q0pLtjtyytf_o6_EshWkH1BSElWzT8BD573Ywa0--zE6-j8ezeDSN39XnHoqO4eW8U2C5Q-4GgiusCDy7Hm028ihQVvi0-9iWtArf-37HW3_azG2EEu-TB-5oQY9bSDwiA10-Jg83sh3UefEnpOoQQluEUIcQCgihW4RQixDqEEJvIYRWhvYQQjuEUIsQ2kfIUxKfjOIPp57T3fBqxbknsmGmg1zkiU2HRbnvqzTKMsGDPGNGY--0sKrVJuTa8ITDmOooVUYJbvzwGdkrq1IfEIp7QirCTBqRM1_qxBgWBSaQWRqiFzgkbzb_2QzcGt5VJaWuVs0sZEwOGQsPCf3FEwpv0CMZ8d88ApsLg3ibP__zKi_I_S16X5K95WKlX5F72Rrwv3htgXEDVyeI2w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+K-Line+Meshing+via+Non-Linear+Least+Squares+Interpolation+of+Affectively+Decorated+Media+Repositories&rft.jtitle=Open+artificial+intelligence+journal&rft.au=Toptsis%2C+Anestis+A&rft.au=Dubitski%2C+Alexander&rft.date=2008-01-01&rft.issn=1874-0618&rft.eissn=1874-0618&rft.volume=2&rft.spage=46&rft.epage=61&rft_id=info:doi/10.2174%2F1874061800802010046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-0618&client=summon