Minimum Displacement in Existing Moment (MDEM)- A new supervised learning algorithm by incrementally constructing the moments of the underlying classes

We introduce a supervised learning method that classifies each test point by selecting the class for which its inclusion causes minimum displacement of the class's existing n-th central moment. After each such inclusion, the n-th central moment of the corresponding class is updated by some incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 20; H. 12; S. e0336933
1. Verfasser: Nizam, Ahmed Mehedi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.12.2025
Schlagworte:
ISSN:1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce a supervised learning method that classifies each test point by selecting the class for which its inclusion causes minimum displacement of the class's existing n-th central moment. After each such inclusion, the n-th central moment of the corresponding class is updated by some incremental calculations in constant time, i.e., each class evolves gradually and changes its definition incrementally after the inclusion of every new data point. We then use k-fold and stratified k-fold cross validation techniques to compare the performance of our proposed model with various state of the art supervised learning algorithms including Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) and Logistic Regression (LR) using Pima Indian Diabetes (PID) dataset and Wisconsin breast cancer dataset, which are popular datasets in machine learning research. Our analyses suggest the performances of different MDEM algorithms as proposed here involving different order of moments vary within the range of [83.19% - 95.82%] of the best algorithm under consideration in k-fold and stratified k-fold cross validation techniques for PID dataset. Moreover, for Wisconsin breast cancer dataset, different variants of MDEM algorithms have achieved accuracy scores in the range of [88.85% - 96.41%] of the best algorithm. Finally, we compare the results produced by different algorithms by constructing the corresponding confusion matrices.
AbstractList We introduce a supervised learning method that classifies each test point by selecting the class for which its inclusion causes minimum displacement of the class's existing n-th central moment. After each such inclusion, the n-th central moment of the corresponding class is updated by some incremental calculations in constant time, i.e., each class evolves gradually and changes its definition incrementally after the inclusion of every new data point. We then use k-fold and stratified k-fold cross validation techniques to compare the performance of our proposed model with various state of the art supervised learning algorithms including Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) and Logistic Regression (LR) using Pima Indian Diabetes (PID) dataset and Wisconsin breast cancer dataset, which are popular datasets in machine learning research. Our analyses suggest the performances of different MDEM algorithms as proposed here involving different order of moments vary within the range of [83.19% - 95.82%] of the best algorithm under consideration in k-fold and stratified k-fold cross validation techniques for PID dataset. Moreover, for Wisconsin breast cancer dataset, different variants of MDEM algorithms have achieved accuracy scores in the range of [88.85% - 96.41%] of the best algorithm. Finally, we compare the results produced by different algorithms by constructing the corresponding confusion matrices.
We introduce a supervised learning method that classifies each test point by selecting the class for which its inclusion causes minimum displacement of the class’s existing n-th central moment. After each such inclusion, the n-th central moment of the corresponding class is updated by some incremental calculations in constant time, i.e., each class evolves gradually and changes its definition incrementally after the inclusion of every new data point. We then use k-fold and stratified k-fold cross validation techniques to compare the performance of our proposed model with various state of the art supervised learning algorithms including Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) and Logistic Regression (LR) using Pima Indian Diabetes (PID) dataset and Wisconsin breast cancer dataset, which are popular datasets in machine learning research. Our analyses suggest the performances of different MDEM algorithms as proposed here involving different order of moments vary within the range of [83.19% − 95.82%] of the best algorithm under consideration in k-fold and stratified k-fold cross validation techniques for PID dataset. Moreover, for Wisconsin breast cancer dataset, different variants of MDEM algorithms have achieved accuracy scores in the range of [88.85% − 96.41%] of the best algorithm. Finally, we compare the results produced by different algorithms by constructing the corresponding confusion matrices.
Author Nizam, Ahmed Mehedi
Author_xml – sequence: 1
  givenname: Ahmed Mehedi
  orcidid: 0000-0002-6929-863X
  surname: Nizam
  fullname: Nizam, Ahmed Mehedi
  organization: The Central Bank of Bangladesh, Motijheel, Dhaka, Bangladesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41348909$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1OwzAQhC0Eoj_wBgh8hEOK002c5Fi15UdqxaX3yrG3rSvHiewEyJPwuqShnFY7M_qkmRG5tKVFQu5CNgkhCZ-PZeOsMJOqkycMgGcAF2QYZjAN-JTBgIy8PzIWQ8r5NRlEIURpxrIh-Vlrq4umoAvtKyMkFmhrqi1dfmtfa7un67KXHteL5fopoDNq8Yv6pkL3qT0qalA4ewoKsy-drg8FzduOIF3PEsa0VJbW166RPbA-IC16qKflrn8bq9CZ9uRKI7xHf0OudsJ4vD3fMdm8LDfzt2D18fo-n62CqqsYAO5SofIMFSJTsRQiAgwZhHkmo4hLkcs45olUrCuMXKgEZQoSuIAw2aGCMXn4w1am9NvzjH4L0yRL45Rx1iXuz4kmL1BtK6cL4drt_4TwC0rTeYA
ContentType Journal Article
Copyright Copyright: © 2025 Ahmed Mehedi Nizam. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2025 Ahmed Mehedi Nizam. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Ahmed Mehedi Nizam. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2025 Ahmed Mehedi Nizam. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1371/journal.pone.0336933
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3279858060
41348909
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADCSY
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AGGLG
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
NPM
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RIG
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ID FETCH-LOGICAL-p933-3ef8adb9edee0d5caa43e1031b9c446cabc5567cd0134e6ad7ec83c36a317fed3
IEDL.DBID FPL
IngestDate Wed Dec 10 15:00:44 EST 2025
Wed Dec 10 15:01:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2025 Ahmed Mehedi Nizam. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p933-3ef8adb9edee0d5caa43e1031b9c446cabc5567cd0134e6ad7ec83c36a317fed3
ORCID 0000-0002-6929-863X
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0336933
PMID 41348909
ParticipantIDs plos_journals_3279858060
pubmed_primary_41348909
PublicationCentury 2000
PublicationDate 20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251201
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
SSID ssj0053866
Score 2.4934793
Snippet We introduce a supervised learning method that classifies each test point by selecting the class for which its inclusion causes minimum displacement of the...
SourceID plos
pubmed
SourceType Open Website
Index Database
StartPage e0336933
SubjectTerms Algorithms
Breast cancer
Breast Neoplasms
Classification
Data points
Datasets
Decision trees
Diabetes Mellitus
Expected values
Female
Humans
Logistic Models
Machine learning
Neural networks
Neural Networks, Computer
Optimization techniques
Random variables
Regression analysis
Sample size
Supervised learning
Supervised Machine Learning
Support Vector Machine
Support vector machines
Title Minimum Displacement in Existing Moment (MDEM)- A new supervised learning algorithm by incrementally constructing the moments of the underlying classes
URI https://www.ncbi.nlm.nih.gov/pubmed/41348909
http://dx.doi.org/10.1371/journal.pone.0336933
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  databaseCode: M~E
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  databaseCode: P5Z
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/hightechjournals
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  databaseCode: M0K
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  databaseCode: M7P
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  databaseCode: M7S
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  databaseCode: PATMY
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/environmentalscience
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  databaseCode: 7X7
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/healthcomplete
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  databaseCode: KB.
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  databaseCode: 7RV
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/nahs
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  databaseCode: BENPR
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  databaseCode: 8C1
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/publichealth
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  databaseCode: PIMPY
  dateStart: 20061201
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  databaseCode: FPL
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  eissn: 1932-6203
  dateEnd: 99991231
  titleUrlDefault: http://www.plos.org/publications/
  omitProxy: false
  ssIdentifier: ssj0053866
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwELUK9MClZWkptGU1Bw5wCE3ijRMfadlVD7urVcWB28qxx0ukbLJaA4Iv4XcZe4MqIXHgmCgeJfMynje2Z4axE_IaRknNI5soGw0QRSSzkkdFogtLkZxMMCA9zqfT4vpazv4Hiq928Hme_Op0er5qGzyPORcUgm-xnZQL4Vs1jGbjl5mXbFeILj3urZG-hmndulckMjiT0ef3vsYe-9TRRrjY4NxjH7DZZ73OMB2cdtWjz76wp0nVVMu7JVxWLhy48st_UDUwfPDm3Cxg0oZbpxPC4CyCCyBmDe5u5WcNhwa6RhILUPWiXVe3N0soH0mC3iwlqrp-BN2-VJ6l54hDwjIIddDacOlT09a1T6EC7fk5uq_sajS8-vM36rovRCv6tIijLZQpJRrE2GRaqQFH3xOilJpCSK1KnWUi14Y45ACFMjnqgmsuFDESi4YfsO2GdHXIgHPCvCSeklgKvmSqEmmULlKrM24RkyN26DGZdyp2c57mssiKWMRH7NsGp_lqU3xjTk6XZMTy-9uDfrDd1HfpDYdOfrJtUgces4_6_rZy6z7b-T2czv71Q_TdDz_QM0XXyAw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LU9swENa0lBm4FCgUwqPdQw9wcGpH8UNHBsjQaZLhkAM3jyytgmccOxOHTvkl_busZOXCDLfe_JBW9q4e30r7YOwHrRpaCsUDE0kTDBGTQMQFD7JIZYY0ORGhk_Q4nU6zx0fx4EMKWV8Yz0HSEaumdSf59qKp8afnZHdw2o94Gm0K95f0vh9ynpB2_pF9SkkFsdZdo4fxZlKmYZ0k3nPuvZo2vCm19QZfunVmtPcfv3CfffZgE667GgfsA9Zf2IEfzi1c-pjTV4fs36Ssy8XzAm7L1plp2U1DKGu4-2sngXoOk8Y9upyQ5K4CuAbC49A-L-1c06IGn35iDrKaN6ty_bSA4oUoqG4DUlbVC6hmE6-WyhHyhIUj2kJj3K11aFtV1vEKlEX12B6x2ehudnMf-JwNwZJ-LeBoMqkLgRox1LGScsjRZpIohCLFU8lCxXGSKk3Ic4iJ1CmqjCueSMIxBjX_yrZq4tUJA86ppxSEbiJDKpsYyEhoqbKBUTE3iFGPnVjG5xt55HyQiizOwiTsseNOhPmyC9mR01JNNEJx-n6l72znfjYZ5-Nf099nbHdg8_w6s5VztkWswQu2rf6sy3b1zfWsVyD43nI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swED6kaVF0SZu-kj5vKIpkkCOZ1oNj0MRoUdvwkCFLIVDk0REgS4blFMkv6d_tkZKWAhm7SQJ5ku74-D6SdwfwhWcNo6QWgY2UDSZESSDjQgRZpDPLTE5G5C09SxeL7PpaLvfg1-AL02uQOWLVtH4n3100NZ31mjxz8Yq63dNRJNJoqDHacKFRKETCFP2rjzjkVsZ2zgHpETxOmZY4bjZdzoaBmrt6kvTedA8JciFP-f3_YE4_90yf_-evfgEHPSjF807KIexR_RIO-27f4kkfm_r0FfyZl3W5vl3jRdn641xucRHLGi_v3GBRr3De-Ecnc7bwaYDnyLgd29uNG5NaMtinqVihqlbNttzdrLG4Zwm6W6hUVXWPuhni2nI5Rqi49kJbbKy_dY5v28o5aKF26J_a13A1vbz69j3oczsEG_7TQJDNlCkkGaLQxFqpiSCXcaKQmgmqVoWO4yTVhhHqhBJlUtKZ0CJRjHcsGfEG9mtW3RGgENyiCkZBkWVqJ8cqkkbpbGx1LCxRdAxHzhj5YKNcjFOZxVmYhMfwtjNrvulCe-Q8pbOMUL57uNJneLq8mOazH4uf7-HZ2KUD9qdbPsA-a4Y-whP9e1e220--sf0FfMntpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Displacement+in+Existing+Moment+%28MDEM%29-+A+new+supervised+learning+algorithm+by+incrementally+constructing+the+moments+of+the+underlying+classes&rft.jtitle=PloS+one&rft.au=Nizam%2C+Ahmed&rft.date=2025-12-01&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0336933&rft.externalDocID=3279858060