An Efficient Density-Based Clustering Algorithm for the Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) is one of the most challenging problems in the optimization of distribution. Most approaches can solve case studies involving less than 100 nodes to optimality, but time-consuming. To overcome the limitation, this paper presents a novel two-phase heuris...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced network, monitoring, and controls Ročník 2; číslo 4; s. 161 - 165
Hlavní autor: Zhang, Jiashan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Xi'an Sciendo 01.01.2017
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:2470-8038
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The capacitated vehicle routing problem (CVRP) is one of the most challenging problems in the optimization of distribution. Most approaches can solve case studies involving less than 100 nodes to optimality, but time-consuming. To overcome the limitation, this paper presents a novel two-phase heuristic approach for the capacitated vehicle routing problem. Phase I aims to identifying sets of cost-effective feasible clusters through an improved density-based clustering algorithm. Phase II assigns clusters to vehicles and sequences them on each tour. Max-min ant system is used to order nodes within clusters . The simulation results indicate efficiency of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2470-8038
DOI:10.21307/iccnea.2017.96