On shift selection for Krylov subspace based model order reduction

Mechanical systems are often modeled with the multibody system method or the finite element method and numerically described with systems of differential equations. Increasing demands on detail and the resulting high complexity of these systems make the use of model order reduction inevitable. Frequ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multibody system dynamics Ročník 58; číslo 3-4; s. 231 - 251
Hlavní autoři: Frie Lennart, Eberhard, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.01.2023
Témata:
ISSN:1384-5640, 1573-272X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mechanical systems are often modeled with the multibody system method or the finite element method and numerically described with systems of differential equations. Increasing demands on detail and the resulting high complexity of these systems make the use of model order reduction inevitable. Frequently, moment matching based on Krylov subspaces is used for the reduction. There, the transfer functions of the full system and of the reduced system are matched at distinct frequency shifts. The selection of these shifts, however, is not trivial. In this contribution we suggest an algorithm that evaluates an increasing number of shifts iteratively until a reduced model that approximates the full model in a subspace with very low approximation error is found. Thereafter, the projection matrix that spans this subspace is decomposed with singular value decomposition and only most important directions are retained. In this way, small reduced models with good approximation properties that do not exceed a predefined error bound can be found or low-error models for a given reduced order can be generated. The evaluation of more shifts than necessary and further reduction by means of singular value decomposition is the novelty of this contribution. In this paper, this novel approach is extensively studied and, furthermore, applied to the numerical example of an industrial helicopter model.
AbstractList Mechanical systems are often modeled with the multibody system method or the finite element method and numerically described with systems of differential equations. Increasing demands on detail and the resulting high complexity of these systems make the use of model order reduction inevitable. Frequently, moment matching based on Krylov subspaces is used for the reduction. There, the transfer functions of the full system and of the reduced system are matched at distinct frequency shifts. The selection of these shifts, however, is not trivial. In this contribution we suggest an algorithm that evaluates an increasing number of shifts iteratively until a reduced model that approximates the full model in a subspace with very low approximation error is found. Thereafter, the projection matrix that spans this subspace is decomposed with singular value decomposition and only most important directions are retained. In this way, small reduced models with good approximation properties that do not exceed a predefined error bound can be found or low-error models for a given reduced order can be generated. The evaluation of more shifts than necessary and further reduction by means of singular value decomposition is the novelty of this contribution. In this paper, this novel approach is extensively studied and, furthermore, applied to the numerical example of an industrial helicopter model.
Author Eberhard, Peter
Frie Lennart
Author_xml – sequence: 1
  fullname: Frie Lennart
– sequence: 2
  givenname: Peter
  surname: Eberhard
  fullname: Eberhard, Peter
BookMark eNotjU1LAzEURYNUsK3-AVcB19H38tEkSy1axUI3XbgrmckLtoyTMekI_nuLuroXzuXcGZv0uSfGrhFuEcDeVUTQWoCUAryzUtgzNkVjlZBWvk1OXTktzELDBZvVegCQaLSfsodNz-v7Ph15pY7a4z73POXCX8t3l794HZs6hJZ4EypF_pEjdTyXSIUXiuPv_pKdp9BVuvrPOds-PW6Xz2K9Wb0s79disNIKYx1AQh9ismQw-aADKOWaJlJyrXUnrNvkU3JoXBs8GojGtBooKZOkmrObP-1Q8udI9bg75LH0p8eddAa9RocL9QPhWU4r
ContentType Journal Article
Copyright The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID JQ2
DOI 10.1007/s11044-022-09872-7
DatabaseName ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1573-272X
EndPage 251
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JQ2
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
ID FETCH-LOGICAL-p727-57800f19adf7e51f9a4a0338bbdef8c788004cf9ff8158ca9150d55c40ef35f23
ISSN 1384-5640
IngestDate Thu Oct 02 16:28:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p727-57800f19adf7e51f9a4a0338bbdef8c788004cf9ff8158ca9150d55c40ef35f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11044-022-09872-7.pdf
PQID 2851941816
PQPubID 2043839
PageCount 21
ParticipantIDs proquest_journals_2851941816
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationYear 2023
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0021549
Score 2.3134894
Snippet Mechanical systems are often modeled with the multibody system method or the finite element method and numerically described with systems of differential...
SourceID proquest
SourceType Aggregation Database
StartPage 231
SubjectTerms Algorithms
Approximation
Decomposition
Differential equations
Errors
Finite element method
Helicopters
Mathematical analysis
Mathematical models
Mechanical systems
Model reduction
Multibody systems
Reduced order models
Singular value decomposition
Subspaces
Transfer functions
Title On shift selection for Krylov subspace based model order reduction
URI https://www.proquest.com/docview/2851941816
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1384-5640
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagcOBS3qK0IB8Ql8goL9f2saBWSFS7CALa28pPdS_ukmyr9t8zfiRbtRKCA5coSqREyXyamc-emQ-hd4BZK0yliNVUk7YNRQDMKWIUpNfKBXlrGcUm2GzGFwvxNdeqDlFOgHnPr67E-r-aGq6BsUPr7D-Ye3ooXIBzMDocwexw_CvDz30xnK3cphiixM1YSvilB2p-WQzgKIAm2yKEL5OEcIo4f7PowxTXyU6jylMoOFTn5jrPfC5MkrC_0TayCk1B3o_TkkJ6rmx_JlPR_LYAOK8t1M2ttYVxbTEUToftjKn3JbrKhreEHqZhSx9sdp-sITWLAumTf6X8Bo7Gnp7sLnMESJG3TqNn7zj1Mjc5A3NsSeg-KAVnwAu2IWzctp_Nlyc_Tk-X3fGie7_-RYK4WNiEz0or99GDmlERKv--ff858fIwpS7y8vxBubcqdVjefumdmB0Tke4J2s0MAh8lyz9F96x_hh5nNoGzrx6eo49zjyMQ8AQEDEDACQh4BAKOQMARCDgCAU9AeIG6k-Pu02eSFTPIGvJQAt63LF0lpHHM0soJ2cqyabhSxjquGfjqstVOOMcryrUUwAYMpbotrWuoq5uXaMefe_sK4boyzChJG6Phj1AppAYiwbWpKlY1mu2hg_E3LDP4h2UN6btoIWc8fP3n2_vo0RZuB2hn01_YN-ihvtyshv5ttM5vZBpVEQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shift+selection+for+Krylov+subspace+based+model+order+reduction&rft.jtitle=Multibody+system+dynamics&rft.au=Frie+Lennart&rft.au=Eberhard%2C+Peter&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=58&rft.issue=3-4&rft.spage=231&rft.epage=251&rft_id=info:doi/10.1007%2Fs11044-022-09872-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon