The fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition

We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order O ( ϵ 1 4 ) in H1‐norm for the velocity and in L2‐norm f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical methods for partial differential equations Ročník 34; číslo 3; s. 881 - 905
Hlavní autor: Zhou, Guanyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Wiley Subscription Services, Inc 01.05.2018
Témata:
ISSN:0749-159X, 1098-2426
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order O ( ϵ 1 4 ) in H1‐norm for the velocity and in L2‐norm for the pressure, where ϵ is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to O ( ϵ ) . Moreover, we derive the a priori estimates depending on ϵ for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate O ( h + ϵ 1 4 ) in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to O ( h + ϵ 1 2 ) . The theoretical results are verified by the numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22235