Auxiliary model based identification methods.Part F: Performance Analysis

Performance analysis of identification methods is the important and difficult projects in the area of system identification. Once one new identification method is born, its convergence analysis appears. The auxiliary model identification is a branch of system identification and has become a large fa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nanjing Xinxi Gongcheng Daxue Xuebao Ročník 8; číslo 6; s. 481
Hlavní autor: Feng, Ding
Médium: Journal Article
Jazyk:čínština
angličtina
Vydáno: Nanjing Nanjing University of Information Science & Technology 01.12.2016
Témata:
ISSN:1674-7070
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Performance analysis of identification methods is the important and difficult projects in the area of system identification. Once one new identification method is born, its convergence analysis appears. The auxiliary model identification is a branch of system identification and has become a large family of identification methods, their convergence brings many projects. This paper studies the consistent convergence of the auxiliary model (AM) based stochastic gradient ( SG ) algorithm, the AM recursive least squares (RLS) algorithm, the AM multiinnovation SG algorithm, the interval-varying AM SG algorithm and the interval-varying AM RLS algorithm for out-put-error systems, and analyzes approximately the convergence of the AM recursive generalized extended least squares algorithm for Box-Jenkins systems.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7070
DOI:10.13878/j.cnki.jnuist.2016.06.001