Auxiliary model based identification methods.Part F: Performance Analysis

Performance analysis of identification methods is the important and difficult projects in the area of system identification. Once one new identification method is born, its convergence analysis appears. The auxiliary model identification is a branch of system identification and has become a large fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanjing Xinxi Gongcheng Daxue Xuebao Jg. 8; H. 6; S. 481
1. Verfasser: Feng, Ding
Format: Journal Article
Sprache:Chinesisch
Englisch
Veröffentlicht: Nanjing Nanjing University of Information Science & Technology 01.12.2016
Schlagworte:
ISSN:1674-7070
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Performance analysis of identification methods is the important and difficult projects in the area of system identification. Once one new identification method is born, its convergence analysis appears. The auxiliary model identification is a branch of system identification and has become a large family of identification methods, their convergence brings many projects. This paper studies the consistent convergence of the auxiliary model (AM) based stochastic gradient ( SG ) algorithm, the AM recursive least squares (RLS) algorithm, the AM multiinnovation SG algorithm, the interval-varying AM SG algorithm and the interval-varying AM RLS algorithm for out-put-error systems, and analyzes approximately the convergence of the AM recursive generalized extended least squares algorithm for Box-Jenkins systems.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7070
DOI:10.13878/j.cnki.jnuist.2016.06.001